Soil nitrogen transformations under *Populus tremuloides*, *Betula papyrifera* and *Acer saccharum* following 3 years exposure to elevated CO₂ and O₃

WILLIAM E. HOLMES*, DONALD R. ZAK*, KURT S. PREGITZER† and JOHN S. KING† *School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109-1115, †School of Forestry and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA

Abstract

Increases in atmospheric O_2 and tropospheric O_3 may affect forest N cycling by altering plant litter production and the availability of substrates for microbial metabolism. Three years following the establishment of our free-air CO_2 - O_3 enrichment experiment, plant growth has been stimulated by elevated CO₂ resulting in greater substrate input to soil; elevated O_3 has counteracted this effect. We hypothesized that rates of soil N cycling would be enhanced by greater plant productivity under elevated CO₂, and that CO₂ effects would be dampened by O_3 . We found that elevated CO_2 did not alter gross N transformation rates. Elevated O₃ significantly reduced gross N mineralization and microbial biomass N, and effects were consistent among species. We also observed significant interactions between CO_2 and O_3 : (i) gross N mineralization was greater under elevated CO₂ (1.0 mg N kg⁻¹ day⁻¹) than in the presence of both CO₂ and O₃ $(0.5 \text{ mg N kg}^{-1} \text{ day}^{-1})$ and (ii) gross NH_4^+ immobilization was also greater under elevated CO_2 (0.8 mg N kg⁻¹ day⁻¹) than under CO_2 plus O_3 (0.4 mg N kg⁻¹ day⁻¹). We used a laboratory ¹⁵N tracer method to quantify transfer of inorganic N to organic pools. Elevated CO₂ led to greater recovery of NH_4^{+} -¹⁵N in microbial biomass and corresponding lower recovery in the extractable NO_3^- pool. Elevated CO_2 resulted in a substantial increase in $NO_3^{-15}N$ recovery in soil organic matter. We observed no O_3 main effect and no CO_2 by O_3 interaction effect on ¹⁵N recovery in any soil pool. All of the above responses were most pronounced beneath Betula papyrifera and Populus tremuloides, which have grown more rapidly than Acer saccharum. Although elevated CO_2 has increased plant productivity, the resulting increase in plant litter production has yet to overcome the influence of the pre-existing pool of soil organic matter on soil microbial activity and rates of N cycling. Ozone reduces plant litter inputs and also appears to affect the composition of plant litter in a way that reduces microbial biomass and activity.

Keywords: Acer, Betula, CO₂, immobilization, mineralization, ¹⁵N, N cycling, O₃, Populus

Received 4 December 2001; revised version received 27 January 2003 and accepted 14 March 2003

Introduction

The concentrations of carbon dioxide (CO₂) and ozone (O₃) in the Earth's troposphere are expected to increase over the next century due to fossil fuel burning and the conversion of forests to other land uses (Keeling *et al.*, 1995; Finlayson-Pitts & Pitts, 1997; Fowler *et al.*, 1998; Stevenson *et al.*, 1998). The combined effects of greater

Correspondence: William E. Holmes, tel. +1 734 647 5925, fax +1 734 936 2195, e-mail: bholmes@umich.edu

 CO_2 and O_3 on ecosystem carbon (C) and nitrogen (N) cycling are difficult to predict, because CO_2 and O_3 affect plant growth in opposing ways. While greater CO_2 stimulates photosynthesis and the growth of many temperate tree species (Curtis, 1996; Curtis & Wang, 1998), greater O_3 could decrease photosynthesis and the growth of some species (Wang *et al.*, 1986; Coleman *et al.*, 1995a; Karnosky *et al.*, 1998) by inducing foliar damage and accelerating leaf senescence (Karnosky, 1976; Karnosky *et al.*, 1996). Further complicating the matter is the fact that tree species differ in their

responsiveness to CO_2 and in their susceptibility to O_3 damage. Thus, forest net primary productivity may be enhanced by increasing atmospheric CO_2 (DeLucia *et al.*, 1999), but it is uncertain how a concomitant increase in tropospheric O_3 will alter plant productivity, litter production and, in turn, ecosystem C and N cycling.

Rates of soil N cycling may be altered by the influence of elevated CO₂ and O₃ on plant litter production, which controls substrate availability for heterotrophic microbial metabolism. There is considerable uncertainty regarding how changes in microbial activity under elevated CO2 will influence soil N cycling (Zak et al., 2000a), and we know little of the relationship between plant response to elevated O3 and soil microbial activity (Islam et al., 2000). We have been studying the influence of elevated CO_2 and O_3 on the growth of ecologically contrasting temperate tree species at the Forest-Atmosphere Carbon Storage and Transfer (FACTS-II) FACE experiment near Rhinelander, WI, USA. Our results to date suggest that changes in plant production resulting from our treatments have altered the input and metabolism of plant litter by soil microbial communities. Elevated CO₂ has increased the production of leaf and fine root litter (King *et al.*, 2001; Lindroth et al., 2001), which has resulted in greater rates of microbial respiration and increased activities of extracellular enzymes involved with the degradation of plant and fungal cell wall components (i.e. cellobiohydrolase and N-acetylglucosamidase; Larson et al., 2002; Phillips et al., 2002). The magnitude of this response varied between early-successional (i.e. Populus tremuloides and Betula papyrifera) and late-successional (Acer saccharum) tree species, but the presence of elevated O₃ eliminated the influence of elevated CO₂ on microbial activity. A greater metabolic capability to degrade plant and fungal litter under elevated CO₂ suggests that microbial communities have a greater biosynthetic demand for N, which could potentially decrease N availability to plants and increase the movement of N into soil organic matter. However, this may be counteracted by elevated O₃.

Our primary objective was to determine how elevated CO_2 and O_3 alter the cycling of N among soil solution, microbial communities, and soil organic matter. We measured gross N transformation rates and traced inorganic ¹⁵N transfer into microbial biomass and organic matter in soil beneath stands of *P. tremuloides*, *B. papyrifera*, and *A. saccharum* growing under free-air CO_2 and O_3 enrichment treatments. Because the growth response of these temperate trees varies under elevated atmospheric CO_2 and O_3 , we reasoned that the changes in microbial activity and soil N cycling would be governed by the response of the dominant vegetation to our experimental treatments.

Methods

Experimental design and field sampling

We studied soil ¹⁵N transformations at the FACTS-II FACE experiment (45°40.5'N, 89°37.5'E, 490 m elevation; Karnosky et al., 1999; Dickson et al., 2000). The site consists of 12-30 m diameter plots planted in 1997 with trembling aspen (P. tremuloides Michx.), paper birch (B. papyrifera Marsh.), and sugar maple (A. saccharum Marsh.). One-half of each plot is planted with five aspen genotypes that differ in O_3 sensitivity and leaf phenology (Coleman et al., 1995a, b; Curtis et al., 2000). One-quarter of each plot is planted with aspen and sugar maple, and the remaining quarter is planted with aspen and paper birch. All sections were planted at a density of 0.95 stems m⁻², providing a total of 670 stems per 30m diameter plot. Our study was confined to the central plot area. Soils are Alfic Haplorthods with a sandy loam Ap horizon overlaying a sandy clay loam Bt horizon. Soil physical and chemical properties have been summarized by Dickson et al. (2000).

Factorial CO₂ and O₃ treatments were arranged in a randomized complete block design with three replicates (blocks). The split-plot effect consisted of the three sections differing in species composition (aspen, aspenbirch, and aspen-maple) within each plot. Fumigation gases are delivered to 32 vertical vent pipes spaced uniformly around the perimeter of each 30 m diameter plot. The control system maintains target CO₂ and O₃ concentrations by regulating the release of fumigation gases from the upwind vent pipes. Fumigation occurs during the daylight hours for the duration of the growing season. In 1999, atmospheric CO₂ concentrations were $346.5 L L^{-1}$ in the ambient CO₂ plots and $547.8 L L^{-1}$ in the elevated CO₂ plots. Atmospheric O₃ concentrations were 36.9 and 51.7 nL L^{-1} in the ambient and elevated plots, respectively (Dickson et al., 2000).

In July 1999, we collected six soil cores (2.5 cm D) to a depth of 10 cm from each split plot. Samples were combined by split plot, stored on ice, and were processed within 24 h of collection. All results are expressed on an oven-dry (105 °C) mass basis.

Soil N transformations

We determined gross rates of N mineralization and nitrification (Davidson *et al.*, 1992; Hart *et al.*, 1994) and traced inorganic ¹⁵N from soil solution into microbial biomass and soil organic matter. Soils were prepared by removing fine roots and coarse woody debris by hand and passing the remaining material through a 2 mm

mesh. Soil adhering to roots was removed during sorting and returned to the original sample, which was homogenized. From each soil sample, precisely 12.00 g $(\pm 0.02 \text{ g})$ was weighed into each of five glass vials (29 mm $D \times$ 94 mm H). Two soil samples were enriched with precisely $1.00 \text{ mL} (\pm 0.01 \text{ mL})^{15} \text{N-NH}_4 \text{Cl solution}$, two were enriched with the same volume of ¹⁵N-KNO₃ solution, and the remaining sample received 1.00 mL deionized water. The ¹⁵N solutions were prepared using a mixture of ¹⁵N-labeled (99.5%) and unlabeled N, which produced similar target concentrations of N $(2-5 g N g^{-1} \text{ soil})$ and ${}^{15}N (2-4 \text{ at.}\% \text{ excess } {}^{15}N)$ in both ¹⁵NH₄⁺ - and ¹⁵NO₃⁻ -labeled soil. Isotope label solutions were added by pipetting evenly over the soil surface. The volume of the solution was adequate to disperse the label evenly throughout each 12g sample, as indicated by uniform wetting of the entire soil volume, and to bring the soil samples to field capacity. Within 1 h after isotope addition, one of the pair of ${}^{15}NH_4^+$ enriched samples and one of the pair of ¹⁵NO₃⁻enriched samples were extracted with 2M KCl and samples amended with deionized water were also extracted. The remaining ¹⁵NH₄⁺ - and ¹⁵NO₃⁻ -enriched samples were incubated at 20 °C for 2 days, after which we extracted inorganic N with $2\,{\mbox{\scriptsize M}}$ KCl.

We devised a sequential extraction procedure to isolate tracer ¹⁵N within each soil N pool. In the first step, inorganic N (NH₄⁺ and NO₃⁻) and dissolved organic nitrogen (DON) were separated from microbial N and soil organic N. Twenty milliliters of 2M KCl was added to each sample in its original vial. The vials were capped, placed on a shaker for 20 min, and centrifuged for 15 min at 800 rpm. The supernatant was decanted into a 60 mL plastic syringe equipped with a 0.45 m filter attachment. The extraction was repeated with a second 20.0 mL aliquot of 2M KCl. Particulate organic matter and suspended cells were removed from the solutions by forcing them through the 0.45 m filter. The filter from each syringe was placed back into the vial containing the corresponding soil. Filtrates were stored in 120 mL specimen cups at 4 °C prior to isotopic analysis.

A second extraction step was performed to separate microbial N and soil organic N. Vials containing soils and filters were fumigated with CH_3Cl for 5 days in a vacuum desiccator. Residual CH_3Cl was removed by repeated vacuuming (eight times) and 20.0 mL of 0.5 N K₂SO₄ was added to each vial. Vials were capped, placed on a shaker for 30 min, and centrifuged for 15 min at 800 rpm. The supernatant was decanted into a 120 mL specimen cup. This extraction was repeated with an additional 20.0 mL aliquot of 0.5 N K_2SO_4 and the extracts were frozen until they were digested to determine microbial N. The soil samples remaining in

the vials were dried to a constant weight at 60 °C in a forced-air oven. The dried soils were transferred to grinding jars and pulverized with stainless steel pins (0.5 cm $D \times 13.8$ cm L) in a roller mill (Model 755RMV, US Stoneware, East Palestine, OH, USA), and stored for analysis of organic N.

Ammonium-N and NO_3^- -N concentrations in KCl extracts were measured with a Flow Solution 3000 continuous flow analyzer (OI Analytical, College Station, TX, USA). Ammonium-N and NO_3^- -N were sequentially diffused from the KCl extracts onto acid traps in preparation for ¹⁵N analysis using the method of Brooks *et al.* (1989). The acid traps were analyzed for atom% ¹⁵N on a Finnigan Delta Plus isotope ratio mass spectrometer with a Conflo II interface (Thermo Finnigan, San Jose, CA, USA).

Microbial N within the K_2SO_4 extracts was determined by alkaline persulfate digestion (Cabrera & Beare, 1993). Blanks and glycine standards were digested simultaneously with samples. Nitrate-N concentrations in the digestates were measured with a continuous flow analyzer. Nitrate-N in the digested solutions was captured onto acid traps during a 5-day diffusion with MgO and Devarda's alloy. The acid traps were analyzed for atom% ¹⁵N by isotope ratio mass spectrometry.

Soil organic N concentration was measured using a CE Instruments NC2500 elemental analyzer (CE Elantech, Lakewood, NJ, USA). Atom% ¹⁵N in soil organic N was determined by isotope ratio mass spectrometry. We used the resulting N concentration and atom% ¹⁵N data to calculate the recovery of ¹⁵N label within inorganic N, microbial N, and soil organic N pools following the 2 day incubation. For each pool, we calculated atom% ¹⁵N excess (APE) using atom% ¹⁵N of the same pool in the water-amended control as background. We calculated the rates of gross N mineralization and nitrification and rates of gross N immobilization using the isotope pool dilution equations of Hart *et al.* (1994).

Microbial biomass and soil organic C and N

We measured microbial biomass using the chloroform fumigation–extraction procedure (Horwath & Paul, 1994). Soil samples were fumigated with chloroform for 5 days in a vacuum dessicator. Fumigated and control soils were extracted with $0.5 \text{ N K}_2\text{SO}_4$ (in a ratio of 4:1). Organic N in the extracts was determined by alkaline persulfate digestion followed by analysis of NO_3^- -N on a continuous flow analyzer, as described above. Soil organic C and N concentrations were measured using an elemental analyzer, as described above.

Statistical analyses

We tested the influence of elevated CO₂, O₃, and species composition on all pools, fluxes, and ¹⁵N recoveries using an analysis of variance (ANOVA) for a randomized complete block, split-plot design with two factorial treatments, as described by King *et al.* (2001). In this design, species composition splits the main plot. When a particular *F*-test was significant, we compared means using Tukey's HSD multiple comparison procedure. The results were accepted as significant at *P*<0.10.

Results

Gross N transformation rates

We observed a significant interaction between CO_2 and O_3 on rates of gross N mineralization, wherein O_3 significantly reduced rates of N mineralization that occurred under elevated CO_2 (compare elevated CO_2 vs. elevated CO_2 + elevated O_3 means); NH₄⁺ immobilization displayed an identical response (Table 1). Gross N mineralization was significantly reduced under elevated O_3 (P = 0.09, main effect), but was not influenced by CO_2 (main effect). The effect of O_3 on gross N mineralization was consistent among species and effects were most pronounced in aspen. The gross rates of nitrification and immobilization of NO_3^- were not affected by CO_2 , O_3 , or their interactions (Table 1). Species composition and the interaction of species

composition with CO_2 or O_3 had no significant effects on any of the gross N transformations that we measured.

Distributions of ¹⁵N among soil pools

The total recovery of NH_4^+ -¹⁵N averaged $88.3\pm8.19\%$ and did not differ among experimental treatments (Table 2). Elevated CO₂ (main effect) significantly increased the recovery of NH_4^+ -¹⁵N in microbial biomass (P = 0.05) and significantly reduced the recovery of NH_4^+ -¹⁵N in the NO_3^- pool (P = 0.10) relative to the ambient CO₂ treatment. Ozone (main effect) did not have a significant effect on the recovery of NH_4^+ -¹⁵N in any soil pool. The interaction of CO₂ and O₃ also had no effect on NH_4^+ -¹⁵N recovery.

The recovery of NH_4^+ -¹⁵N in soil organic N, microbial biomass, and NO_3^- pools differed by species, such that species with greater recovery in the soil organic N and microbial biomass pools had lower recoveries in the NO_3^- pool. Recoveries of NH_4^+ -¹⁵N in the pools of microbial biomass (P < 0.01) and soil organic N (P = 0.05) were significantly greater in aspen compared with aspen–maple (Table 2). The recovery of NH_4^+ -¹⁵N in the NO_3^- pool was significantly lower in aspen and aspen–birch than in aspen–maple (P < 0.01, Table 2).

We observed significant species-by- O_3 interactions, indicating that the effect of O_3 on NH₄⁺ -¹⁵N recoveries in the NO₃⁻ pool and soil organic N pool differed by species (data not shown). In aspen, O_3 led to a higher

Table 1 Gross rates of N mineralization, nitrification, and microbial immobilization of NH_4^+ and NO_3^- measured in a 2-day ¹⁵N pool dilution experiment

	Interaction	means						
	Ambient O ₃		Elevated O ₃		Main effect means			
	Ambient CO ₂	Elevated CO ₂	Ambient CO ₂	Elevated CO ₂	Ambient CO ₂	Elevated CO ₂	Ambient O ₃	Elevated O ₃
	$\overline{mgNkg^{-1}}$	day ⁻¹			$mgNkg^{-1}day^{-1}$			
Gross N	0.8ab	1.0a	0.8ab	0.5b	0.8	0.8	0.9	0.6*
mineralization	(0.41)	(0.53)	(0.25)	(0.27)	(0.33)	(0.48)	(0.47)	(0.29)
Gross	0.8	1.0	1.0	0.6	0.9	0.8	0.9	0.8
nitrification	(0.29)	(0.38)	(0.39)	(0.22)	(0.35)	(0.36)	(0.34)	(0.37)
NH4 ⁺	0.5ab	0.8a	0.7ab	0.4b	0.6	0.6	0.6	0.5
immobilization	(0.33)	(0.44)	(0.35)	(0.17)	(0.34)	(0.40)	(0.40)	(0.30)
NO ₃ ⁻	0.1	0.2	0.1	0.2	0.1	0.2	0.2	0.2
immobilization	(0.23)	(0.30)	(0.13)	(0.26)	(0.18)	(0.27)	(0.26)	(0.20)

Values are means with standard deviations in parentheses. Significant differences among interaction means are indicated by letters. Means followed by the same letter do not differ significantly (P < 0.10). Significant CO₂ or O₃ main effects are denoted by asterisks (*P < 0.10; **P < 0.05).

	Ambient CO ₂	Elevated CO ₂	Ambient O ₃	Elevated O ₃	Aspen only	Aspen-birch	Aspen-maple
	%		%		%		
¹⁵ NH ₄ ⁺ amended soils							
Extractable NH ₄ ⁺	0.9	0.6	0.7	0.7	0.4	0.7	1.0
	(0.98)	(1.28)	(1.21)	(1.08)	(0.65)	(1.15)	(1.46)
Extractable NO ₃ -	35.9	27.8*	34.2	29.6	26.7a	29.29a	39.6b
	(9.04)	(11.73)	(9.60)	(12.30)	(11.09)	(11.14)	(6.71)
Microbial biomass N	5.0	7.0**	5.7	6.4	6.8a	6.1ab	5.3b
	(0.88)	(1.92)	(1.05)	(2.28)	(1.84)	(1.92)	(1.35)
Soil organic N	49.0	51.7	47.7	53.0	53.2a	52.1ab	45.6b
	(7.49)	(10.38)	(9.10)	(8.37)	(10.76)	(6.80)	(7.78)
Total ¹⁵ N recovery	90.3	86.3	87.9	88.6	87.0	87.8	90.1
	(8.01)	(8.08)	(9.19)	(7.31)	(8.75)	(8.47)	(7.72)
¹⁵ NO ₃ amended soils							
Extractable NH ₄ ⁺	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	(0.07)	(0.02)	(0.04)	(0.06)	(0.02)	(0.05)	(0.07)
Extractable NO ₃ ⁻	78.7	68.9	71.8	76.6	71.3ab	67.7a	82.5b
	(14.33)	(14.98)	(14.55)	(16.06)	(14.69)	(17.21)	(10.26)
Microbial biomass N	3.6	3.9	3.8	3.7	3.6	4.1	3.6
	(1.65)	(2.15)	(2.36)	(1.21)	(1.71)	(2.24)	(1.78)
Soil organic N	7.8	14.2*	10.3	11.3	11.4ab	14.2a	7.1b
U	(6.23)	(9.60)	(10.12)	(6.57)	(7.22)	(11.47)	(4.96)
Total ¹⁵ N recovery	90.1	87.5	86.0	91.7	86.5a	86.6a	93.3b
, ,	(11.00)	(8.25)	(8.25)	(10.36)	(9.38)	(9.33)	(9.45)

Table 2 Main effects of CO_2 , O_3 , and species composition on recoveries of ¹⁵N following a 2-day laboratory incubation of soils amended with either ¹⁵N-labeled NH_4^+ or ¹⁵N-labeled NO_3^-

Values are mean recoveries (with standard deviations) of ¹⁵N in pools of extractable NH_4^+ and NO_3^- , microbial biomass N, and soil organic N. Significant CO_2 or O_3 main effects are denoted by asterisks (*P < 0.10; **P < 0.05). Species main effect means not followed by the same letter are significantly different (P < 0.10).

recovery of NH_4^+ ⁻¹⁵N in soil organic N and a lower recovery in the NO_3^- pool. In contrast, no such trends were observed in aspen–birch. Although these speciesby-O₃ interactions were significant, multiple comparisons did not indicate significant O₃ effects *within* any given species composition (i.e. the only significant contrasts were across species).

The total recovery of NO₃⁻¹⁵N averaged $88.8 \pm 9.67\%$ and differed by species composition only (P = 0.02, Table 2). Elevated CO₂ (main effect) significantly increased the recovery of NO₃⁻¹⁵N in soil organic N (P = 0.08). There was a corresponding decrease in the recovery of NO₃⁻¹⁵N in the NO₃⁻ pool, but it was not significant (P = 0.16). Ozone (main effect) and the interaction of CO₂ and O₃ had no effect on the recovery of NO₃⁻¹⁵N in any soil pool.

The distribution of $NO_3^{-15}N$ among soil pools differed by species. The recovery of $NO_3^{-15}N$ in the pool of soil organic N was greater in aspen–birch compared with aspen–maple (P = 0.10, Table 2). The recovery of $NO_3^{-15}N$ in the NO_3^{-} pool was lower in aspen–birch than in aspen–maple (P < 0.02, Table 2).

We observed significant species-by-O₃ interaction effects on NO₃⁻¹⁵N recoveries in the pools of NO₃⁻, microbial biomass, and soil organic N. In aspen, elevated O₃ led to a greater recovery of NO₃⁻¹⁵N in microbial biomass and soil organic N and a lower recovery in NO₃⁻. In aspen–birch, the effect of O₃ was the reverse – there was greater recovery of NO₃⁻¹⁵N in NO₃⁻ and lower recovery in microbial biomass and soil organic N. However, within-species contrasts were not significant.

Microbial biomass and soil C and N

Microbial biomass averaged $35.9 \pm 9.43 \text{ mg N kg}^{-1}$ over all plots and was not affected by the interaction of CO₂ and O₃ or the main effect of CO₂. However, the main effect of O₃ was significant (P = 0.10). Microbial biomass was 15% lower under elevated O₃ ($32.9 \pm$ 7.12 mg N kg⁻¹) compared with ambient O₃ ($38.9 \pm$ 10.64 mg N kg⁻¹); this effect was consistent among species. Soil organic C and N were not significantly influenced by CO₂, O₃, species composition, or their interactions. Soil organic C averaged $18.0\pm$ 3.39 g C kg⁻¹ and soil organic N averaged $1.45\pm$ 0.231 g N kg⁻¹ across all treatments.

Discussion

Plant growth at the FACTS II FACE site has been strongly influenced by elevated atmospheric CO₂ and O₃ (Isebrands *et al.*, 2001; Karnosky *et al.*, 2003; Sober *et al.*, 2003). In 1999, fine root production and mortality were significantly greater under elevated CO₂ compared with ambient CO₂, and the effects of CO₂ were counteracted by elevated O₃ (King *et al.*, 2001). Others have observed similar CO₂ and O₃ effects on cellulolytic and chitinolytic enzyme activity by soil microbial communities (Larson *et al.*, 2002; Phillips *et al.*, 2002), suggesting that changes in fine root turnover have altered belowground substrate availability for microbial metabolism.

Nevertheless, we found no significant main effect of elevated CO₂ on microbial biomass N or gross rates of N transformations. In cases where we observed significant CO₂-by-O₃ interaction effects, there were no differences between the control and elevated CO₂ treatments. This suggests that the effects of elevated CO₂ alone (no O₃) on plant biomass production and substrate inputs to soil were not sufficient to overcome the influence of the native pool of soil organic matter on microbial activity. This result is consistent with previous studies of gross N transformation rates beneath aspen exposed to elevated CO₂ in open-top chambers for a similar length of time (Zak et al., 2000b). Our experiment consists of aggrading stands of young trees, which still display a substantial growth response to CO2. The effect of CO2 on soil N transformations could become significant if this growth response continues. Our results differ from observations at the Duke FACE site, which consists of loblolly pine stands at more advanced stages of development. There, the response plant growth to CO_2 diminished 3 years following initiation of exposure to elevated CO₂ (Oren et al., 2001). In our study, we have no evidence to suggest that N availability will initially limit the CO₂-induced growth response in our experiment.

Ozone had significant negative effects on microbial biomass and N transformation rates. The influence of O_3 was most distinct in the elevated CO_2 treatments, wherein O_3 significantly reduced gross N mineralization (-47%), gross NH₄⁺ immobilization (-54%), and microbial biomass (-23%). This suggests that O_3 substantially modified the effect of CO_2 on plant litter production. There is some evidence that O_3 reduced aspen dead root production under elevated CO_2 (King

et al., 2001), but we have yet to determine whether O_3 altered the chemical composition of belowground litter inputs in a way that would affect N transformation rates. Gross nitrification rates were unaffected by CO_2 or O_3 and were approximately equal to gross N mineralization rates across treatments and species. Thus, any N mineralized from organic matter and not taken up by plants is rapidly nitrified.

The tree species that we studied differ in life-history traits, litter production and biochemistry, and responsiveness to elevated CO_2 and O_3 . We hypothesized that the response of microbial activity would parallel species-specific changes in plant growth under elevated CO₂ and O₃. In general, the response of plant production to CO₂ and O₃ was least in aspen-maple (Karnosky et al., 2003); the N cycling responses that we observed display a similar pattern. The responses of gross N mineralization, NH₄⁺ immobilization, and microbial biomass to elevated O₃ and the interaction of CO₂ and O₃ were similar in aspen, aspen–birch, and aspen-maple, but the magnitudes of responses were greatest in aspen and aspen-birch. Thus, at this point, we have no evidence that soil N cycling beneath the tree species in our experiment will respond differently to elevated CO₂ and O₃.

In our ¹⁵N tracer experiment, the majority of ¹⁵N added as NH_4^+ was incorporated into soil organic matter (50%) or converted to NO_3^- (32%) during the 2-day laboratory incubation. A small portion (6%) was recovered in soil microbial biomass. Microbial biomass is a dynamic pool and its ¹⁵N enrichment may not reflect the net amount of ¹⁵N that has passed through it during the incubation. Consequently, we cannot determine what proportion of the ¹⁵N recovered in soil organic N is attributable to microbial immobilization or whether the high ¹⁵N recoveries in soil organic matter resulted from abiotic N immobilization (Nömmik, 1965; Nömmik & Vahtras, 1982; Fog, 1988; Johnson *et al.*, 2000).

Elevated CO_2 led to a 40% increase in recovery of NH_4^+ -¹⁵N in microbial biomass and a corresponding decrease in NH_4^+ -¹⁵N recovery in the NO_3^- pool. This likely resulted from greater substrate input under elevated CO_2 . Greater heterotrophic N demand may have led to reduced NH_4^+ availability to autotrophic nitrifying bacteria and, thus, reduced ¹⁵N recovery in the NO_3^- pool. Greater heterotrophic N demand reflects an increase in gross NH_4^+ immobilization under elevated CO_2 , although the increase we observed in this rate was not significant.

Most of the ¹⁵N added to soil in the form of NO_3^- was unmodified (74%), and the remainder was divided between microbial biomass (4%) and soil organic matter (11%). The recovery of NO_3^- -¹⁵N in soil organic N increased by 100% in the aspen and aspen–birch, and by 50% in aspen–maple, in both elevated CO₂ and elevated CO₂ + O₃ treatments. Greater transfer of NO₃⁻⁻¹⁵N to soil organic N under elevated CO₂ (no O₃) could result from greater plant litter inputs to soil (King *et al.*, 2001). However, greater transfer of NO₃⁻⁻¹⁵N to soil organic N under elevated CO₂ + O₃ cannot be explained by greater substrate inputs to soil and, thus, is more likely due to a change in the chemical composition of belowground litter inputs.

We found that elevated CO_2 , both alone and in combination with elevated O₃, caused greater transfer of N from inorganic pools to organic pools. This could occur if the turnover of organic pools increased or if organic pools accumulated N. We found no significant increases in microbial N or soil organic N under elevated CO₂, but it could take several years for such changes to become detectable. Our gross N mineralization and immobilization results indicate that microbial N turnover is greater under elevated CO₂ alone than under elevated $CO_2 + O_3$. Thus, greater transfer of inorganic N to organic pools under elevated $CO_2 + O_3$ is not likely due to greater microbial N turnover, but may have resulted from changes in plant litter biochemistry or microbial community composition. Greater N accumulation in organic pools could be a sign of reduced N availability under elevated $CO_2 + O_{3}$, but this may or may not further limit plant productivity under O₃.

From our analyses, we conclude that tropospheric O₃ is an important factor modifying the response of both plants and soil microorganisms to elevated atmospheric CO₂. We observed similar N cycling responses beneath ecologically distinct tree species, which were consistent with their individual growth responses to elevated CO₂ and O₃. The changes that we observed in microbial biomass, gross N mineralization, and the transfer of N into soil pools appear to be driven by CO₂ and O₃ effects on plant production and the production and chemical composition of plant litter. These results indicate that changes in plant growth due to climate change cascade rapidly through the ecosystem to influence microbial activity in soil. Understanding how changes in microbial activity will alter the longterm availability of N, which will feed back on plant growth responses to atmospheric CO_2 and O_3 , remains elusive. To accomplish this, we need to understand the factors controlling the formation and degradation of soil organic matter over time scales longer than the duration of most current experiments (i.e. 3-6 years). Many of our most critical questions can only be addressed through continued long-term field research in conjunction with mechanistic models of ecosystem C and N dynamics.

Acknowledgements

Our research was supported by grants from the Department of Energy's PER (DE-FG02-93ER6166) and TECO (DE-FG-2-95ERG2125) programs, as well as the USDA NRI Competitive Grants Program (2001-35107-11262) and the US Forest Service North Central Forest Experiment Station. We sincerely thank David Karnosky, Judd Isebrands, and George Hendry, and Jaak Sober who devoted numerous hours to the planning, construction, and maintenance of the Rhinelander FACE Experiment. We thank Matt Tomlinson, Andrea Firman, Noah Karberg, Lidia Szabo, and Christine Hura for assisting with laboratory work.

References

- Brooks PD, Stark JM, McInteer BB *et al.* (1989) Diffusion method to prepare soil extracts for automated nitrogen-15 analysis. *Soil Science Society of America Journal*, 53, 1707–1711.
- Cabrera ML, Beare MH (1993) Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. *Soil Science Society of America Journal*, 57, 1007–1012.
- Coleman MD, Dickson RE, Isebrands JG *et al.* (1995a) Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. *Tree Physiology*, **15**, 585–592.
- Coleman MD, Dickson RE, Isebrands JG *et al.* (1995b) Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone. *Tree Physiology*, **15**, 593–604.
- Curtis PS (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. *Plant*, *Cell and Environment*, **19**, 127–137.
- Curtis PS, Vogel CS, Wang X *et al.* (2000) Gas exchange, leaf nitrogen, and growth efficiency of *Populus tremuloides* in a CO₂ enriched atmosphere. *Ecological Applications*, **10**, 3–17.
- Curtis PS, Wang X (1998) A meta-analysis of elevated CO₂ effects on woody plant mass, form, and physiology. *Oecologia*, **113**, 299–313.
- Davidson EA, Hart SC, Firestone MK (1992) Internal cycling of nitrate in soils of a mature coniferous forest. *Ecology*, 73, 1148–1156.
- DeLucia EH, Hamilton JG, Naidu SL *et al.* (1999) Net primary production of a forest ecosystem with experimental CO₂ enrichment. *Science*, **284**, 1177–1179.
- Dickson RE, Lewin KF, Isebrands JG, et al. (2000) Forest atmosphere carbon transfer storage-II (FACTS II) – The aspen free-air CO₂ and O₃ enrichment (FACE) project in an overview. General Technical Report, NC-214, USDA Forest Service North Central Experiment Station.
- Finlayson-Pitts BJ, Pitts JN Jr (1997) Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particulates. *Science*, **276**, 1045–1051.
- Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. *Biological Reviews of the Cambridge Philosophical Society*, **63**, 433–462.
- Fowler D, Flechard C, Skiba U *et al.* (1998) The atmospheric budget of oxidized nitrogen and its role in ozone formation and deposition. *New Phytologist*, **139**, 11–23.
- Hart SC, Stark JM, Davidson EA et al. (1994) Nitrogen mineralization, immobilization, and nitrification. In: Methods of Soil Analysis Part 2 Microbiological and Biochemical Properties

(eds Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A), pp. 985–1018. Soil Science Society of America, Segoe, WI, USA.

- Horwath WR, Paul EA (1994) Microbial biomass. In: Methods of Soil Analysis Part 2 Microbiological and Biochemical Properties (eds Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A), pp. 753–773. Soil Science Society of America, Segoe, WI, USA.
- Isebrands JG, McDonald EP, Kruger E et al. (2001) Growth responses of *Populus tremuloides* clones to interacting elevated carbon dioxide and tropospheric ozone. *Environmental Pollution*, **115**, 359–371.
- Islam KR, Mulchi CL, Ali AA (2000) Interactions of tropospheric CO₂ and O₃ enrichments and moisture variations on microbial biomass and respiration in soil. *Global Change Biology*, **6**, 255–265.
- Johnson DW, Cheng W, Burke IC (2000) Biotic and abiotic nitrogen retention in a variety of forest soils. *Soil Science Society of America Journal*, **64**, 1503–1514.
- Karnosky DF (1976) Threshold levels for foliar injury to *Populus tremuloides*. Michx by sulfur dioxide and ozone. *Canadian Journal of Forest Research*, **6**, 166–169.
- Karnosky DF, Gagnon ZE, Dickson RE (1996) Changes in growth, leaf abscission, and biomass associated with seasonable tropospheric ozone exposures of *Populus tremuloides* clones and seedlings. *Canadian Journal of Forest Research*, 16, 23–27.
- Karnosky DF, Mankovska B, Percy K *et al.* (1999) Effects of tropospheric O₃ on trembling aspen and interaction with CO₂: results from an O₃-gradient and a FACE experiment. *Water, Air, and Soil Pollution*, **116**, 311–322.
- Karnosky DF, Podila GK, Gagnon Z (1998) Genetic control of responses to interacting tropospheric ozone and CO₂ in *Populus tremuloides. Chemosphere*, **36**, 807–812.
- Karnosky DF, Zak DR, Pregitzer KS *et al.* (2003) Tropospheric O₃ moderates responses of temperate hardwood forests to elevated CO₂: a synthesis of molecular to ecosystem results from the Aspen FACE project. *Functional Ecology*, **17**, 289–304.
- Keeling CM, Whort TP, Wahlen M *et al.* (1995) International extremes in the rate of rise of atmospheric carbon dioxide since. *Nature*, **375**, 666–670.
- King JS, Pregitzer KS, Zak DR et al. (2001) Fine root biomass and fluxes of soil carbon in young stands of paper birch and

trembling aspen is affected by elevated CO₂ and tropospheric O₃. *Oecologia*, **128**, 237–250.

- Larson J, Zak DR, Sinsabaugh RL (2002) Extracellular enzyme activity and metabolism of root-derived substrates beneath temperate trees growing under elevated CO₂ and O₃. *Soil Science Society of America Journal*, **66**, 1848–1856.
- Lindroth RL, Kopper BJ, Parsons WFJ *et al.* (2001) Consequences of elevated carbons dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (*Populus tremuloides*) and paper birch (*Betula papyrifera*). *Environmental Pollution*, **115**, 395–404.
- Nömmik H (1965) Ammonium fixation and other reactions involving a nonenzymatic immobilization of mineral nitrogen in soil. In: *Soil Nitrogen. Agronomy Monograph*, **10** (eds Bartholomew WV, Clark FE), pp. 198–257. ASA, Madison, WI.
- Nömmik H, Vahtras K (1982) Retention and fixation of ammonium and ammonia in soils. In: *Nitrogen in Agricultural Soils. Agronomy Monograph*, **22** (eds Stevenson FJ *et al.*), pp. 123–172. WI, ASA, CSSA, SSSA, Madison.
- Oren R, Ellsworth DS, Johnson KH *et al.* (2001) Soil fertility limits carbon sequestration by a forest ecosystem in a CO₂-enriched atmosphere. *Nature*, **411**, 469–472.
- Phillips RL, Zak DR, Holmes WE (2002) Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. *Oecologia*, **131**, 236–244.
- Sober A, Noormets A, Kull O *et al.* (2003) Photosynthetic parameters of aspen grown with interacting elevated CO_2 and ozone concentrations as associated with leaf nitrogen. *Tree Physiology*, in press.
- Stevenson DS, Johnson CE, Collins WJ et al. (1998) Evolution of tropospheric ozone radiative forcing. Geophysical Research Letters, 25, 3819–3822.
- Wang D, Karnosky DR, Bormann FH et al. (1986) Effects of ambient ozone on the productivity of Populus tremuloides Michx. Grown under field conditions. Canadian Journal of Forest Research, 16, 47–55.
- Zak DR, Pregitzer KS, King JS *et al.* (2000a) Elevated atmospheric CO₂, fine roots and the response of soil microorganisms: a review and hypothesis. *New Phytologist*, **147**, 201–222.
- Zak DR, Pregitzer KS, Curtis PS *et al.* (2000b) Atmospheric CO₂, soil-N availability, and allocation of biomass and nitrogen by *Populus tremuloides. Ecological Applications*, **10**, 34–46.