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Abstract

Atmospheric CO2 is rising rapidly, and options for slowing the CO2 rise are politically charged as they largely require reductions in

industrial CO2 emissions for most developed countries. As forests cover some 43% of the Earth’s surface, account for some 70% of terrestrial

net primary production (NPP), and are being bartered for carbon mitigation, it is critically important that we continue to reduce the

uncertainties about the impacts of elevated atmospheric CO2 on forest tree growth, productivity, and forest ecosystem function. In this paper,

I review knowledge gaps and research needs on the effects of elevated atmospheric CO2 on forest above- and below-ground growth and

productivity, carbon sequestration, nutrient cycling, water relations, wood quality, phenology, community dynamics and biodiversity,

antioxidants and stress tolerance, interactions with air pollutants, heterotrophic interactions, and ecosystem functioning. Finally, I discuss

research needs regarding modeling of the impacts of elevated atmospheric CO2 on forests.

Even though there has been a tremendous amount of research done with elevated CO2 and forest trees, it remains difficult to predict future

forest growth and productivity under elevated atmospheric CO2. Likewise, it is not easy to predict how forest ecosystem processes will

respond to enriched CO2. The more we study the impacts of increasing CO2, the more we realize that tree and forest responses are yet largely

uncertain due to differences in responsiveness by species, genotype, and functional group, and the complex interactions of elevated

atmospheric CO2 with soil fertility, drought, pests, and co-occurring atmospheric pollutants such as nitrogen deposition and O3. Furthermore,

it is impossible to predict ecosystem-level responses based on short-term studies of young trees grown without interacting stresses and in

small spaces without the element of competition. Long-term studies using free-air CO2 enrichment (FACE) technologies or forest stands

around natural CO2 vents are needed to increase the knowledge base on forest ecosystem responses to elevated atmospheric CO2. In addition,

new experimental protocols need to continue to be developed that will allow for mature trees to be examined in natural ecosystems. These

studies should be closely linked to modeling efforts so that the inference capacity from these expensive and long-term studies can be

maximized.
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1. Introduction

The Earth’s atmospheric CO2 concentration has risen to

nearly 30% since the mid-1800s (Barnola et al., 1995;

IPCC, 2001), an increase largely resulting from fossil fuel

burning and forest clearing (Keeling et al., 1995). While

thousands of papers have been published on the impacts of

elevated atmospheric CO2 on plants and plant communities

(Mooney et al., 1991; Bazzaz and Fajer, 1992; Bowes,

1993; Curtis et al., 1994; Mooney and Koch, 1994; Drake

et al., 1997), trees and forests have generally been under-

represented in the CO2 literature (Ceulemans and Mousseau,

1994; Scarascia-Mugnozza et al., 2001). Nevertheless, a

growing body of excellent reviews has been published in the

past 8 years about the impacts of elevated atmospheric CO2

on forest trees and forest ecosystems (Ceulemans and

Mousseau, 1994; Curtis, 1996; Curtis and Wang, 1998;

Saxe et al., 1998; Norby et al., 1999; Karnosky et al.,

2001a). The growing interest in the impacts of elevated

atmospheric CO2 on forest trees and forest ecosystems is not

surprising as forests cover some 43% of the Earth’s surface

(Melillo et al., 1993), account for some 70% of terrestrial

net primary production (NPP) (Melillo et al., 1993), and are

being bartered on world markets for carbon mitigation

purposes (Nilsson, 1995). This paper will make no attempt

to summarize previous research on elevated atmospheric
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CO2 and forests (the reader is requested to see the above

reviews). Rather, this paper will address areas where knowl-

edge gaps remain and where additional research is needed.

2. Growth and productivity

A driving and largely unanswered question in the study

of the effects of climate change on forest ecosystems is

whether biomass production will be increased as a result of

increasing atmospheric CO2 concentrations (Medlyn et al.,

2001a). While it is clear that photosynthesis is enhanced by

elevated atmospheric CO2 (Curtis, 1996; Eamus and Ceule-

mans, 2001) and that long-term down-regulation in photo-

synthesis may not occur (Norby et al., 1999, 2001a; Herrick

and Thomas, 2001; Noormets et al., 2001a; Sôber et al., in

press), it is far less certain what will happen with long-term

growth and productivity under elevated atmospheric CO2

(Körner, 2000; Scarascia-Mugnozza et al., 2001). This

uncertainty arises for several reasons. First, most studies

with trees have been with small trees, for short duration, and

inside greenhouse or field chambers that modify the envi-

ronmental conditions and do not allow for interactions with

other natural stressors. Secondly, it is becoming increasingly

clear that interactions with other factors such as soil fertility

(Oren et al., 2001), atmospheric pollutants (Isebrands et al.,

2001), and soil moisture (Chaves and Pereira, 1992) can

offset the elevated atmospheric CO2 ‘‘fertilization effect’’,

when trees are exposed under more natural forest condi-

tions. Thirdly, almost all studies of elevated greenhouse

gases on forest trees have either doubled the gas concen-

tration or done a single large addition; thus, very little is

known about the dose response and interactive effects of

varying doses of greenhouse gases. With elevated CO2, for

example, little is known about how plants and plant com-

munities will respond to the addition of 50–150 ppm above

ambient. Similarly, little is known about the range of

combinations of CO2 and O3, for example, where one

pollutant or the other may dominate the response depending

on the exposure doses.

2.1. Above-ground growth and productivity

The average enhancement of photosynthesis for trees

exposed to elevated CO2 has been about 60% (Norby et al.,

1999). However, the responses vary considerably between

species (Naumburg et al., 2001), by position in the crown

(Takeuchi et al., 2001), by nitrogen fertility level (Sôber et

al., in press), by season (Noormets et al., 2001a,b), and by

co-occurring pollutant concentrations (Noormets et al.,

2001a,b; Sôber et al., in press).

The enhanced photosynthesis has generally been fol-

lowed by a similar, albeit a somewhat decreased magnitude,

enhancement of above-ground growth. Growth enhance-

ment for trees exposed to elevated CO2 has been about

27% (Norby et al., 1999), with responses again varying with

species (Karnosky et al., in press), soil fertility (Oren et al.,

2001), O3 levels (Isebrands et al., 2001), and year (Norby et

al., 2001a). Whether or not the positive growth responses to

elevated atmospheric CO2 will be maintained through the

life cycles of trees is not known. During the exponential

growth phase, from planting to crown closure, trembling

aspen (Populus tremuloides Michx.) and paper birch (Betula

papyrifera Marsh.) growth enhancement under elevated

atmospheric CO2 has been maintained for 4 years (Isebrands

et al., 2001; Karnosky et al., in press; Percy et al., 2002).

However, with trees beyond the exponential growth stage,

the picture is less clear. Growth enhancement of a 10-year-

old loblolly pine (Pinus taeda L.) forest by elevated CO2

resulted in a few years of growth stimulation (DeLucia et al.,

1999). However, this was followed by sharply decreased

growth after the third year of exposure (Oren et al., 2001),

most likely because soil fertility became a limiting factor. A

similar trend of early above-ground growth stimulation by

elevated atmospheric CO2, for a 15-year-old sweetgum

(Liquidambar styraciflua L.) plantation, followed by a

decreased annual response, has been reported by Norby et

al. (2001a).

The longest study of continuous exposure of forest trees

to elevated atmospheric CO2 has occurred with forest

patches of holm oak (Quercus ilex L.) growing for approx-

imately 30 years in the vicinity of two natural CO2 springs

in Italy (Hättenschwiler et al., 1997). From this study, early

growth enhancement included an almost doubling of annual

growth ring size under elevated CO2. However, a diminish-

ing growth enhancement was noted over the study and at

ages 25–30, there is no additional stimulation of annual

growth rings, and the CO2-enhanced trees are only margin-

ally larger than controls. Interestingly, Tognetti et al. (2000)

found no radial growth enhancement in their long-term

study of five Mediterranean tree species growing near

CO2 vents.

From studies to date, we know that the life-long above-

ground growth response of forest trees in forest stands

cannot be accurately predicted from short-term greenhouse

or chamber studies (Norby et al., 1999) or from step

increases in CO2 concentrations of one age class of trees

alone (Körner, 2000). Studies are needed under realistic

forest conditions where trees are exposed to elevated CO2 in

competitive situations, under natural co-occurring stresses,

and for the lifetime of the stand.

Long-term growth of forest trees under forest stand

conditions, free of chamber effects, with realistic conditions

of above- and below-ground competition, and with natural

co-occurring stresses including other pollutants and insect

disease pests are needed to reduce uncertainties related to

impacts of elevated atmospheric CO2. The two methods

most likely to provide robust and repeatable results are free-

air CO2 enrichment (FACE) studies (Hendrey et al., 1999;

McLeod and Long, 1999; Karnosky et al., 2001b) and

studies using naturally occurring CO2 vents surrounded by

natural forest communities (Hättenschwiler et al., 1997;

D.F. Karnosky / Environment International 29 (2003) 161–169162



Tognetti et al., 2000; Blaschke et al., 2001). While these

studies also have limitations (e.g., blower effects and high

costs of the FACE experiments and the co-occurrence of

contaminating gases, difficulty of finding adequate replica-

tion and representative controls for the CO2 vent studies),

these types of studies are among the best options for

addressing productivity and competitive effects on produc-

tivity under elevated CO2.

2.2. Below-ground growth and productivity

Root systems comprise up to half the total tree biomass

and below-ground net primary production may exceed

50% of total net primary production (Kubiske and God-

bold, 2001). Because C allocation to roots is often fa-

vored over C allocation to shoots in plants grown under

elevated atmospheric CO2, below-ground function of forest

ecosystems may change significantly (Pritchard et al.,

2001).

Increased root growth of forest trees under elevated

atmospheric CO2 has been reported by several researchers

(Matamala and Schlesinger, 2000; Pregitzer et al., 2000;

King et al., 2001; Pritchard et al., 2001). Consistent findings

show that the production and mortality of fine roots pro-

duced by trees growing under CO2 enrichment are signifi-

cantly increased (Matamala and Schlesinger, 2000; Pregitzer

et al., 2000; King et al., 2001; Pritchard et al., 2001).

Species differ in the responsiveness of their root systems

to increased atmospheric CO2, suggesting that differences in

the ability of certain species to compete against others could

be dramatically changed under elevated CO2 (Pritchard et

al., 2001). It is not clear what effect these increased rates of

fine-root turnover will have on C storage in the soil

(Pregitzer et al., 2000). In addition, little is known about

CO2 effects on the growth, development, and C storage

capacity of large, structural roots (Kubiske and Godbold,

2001). Furthermore, more research is needed to determine if

C allocation (i.e. root/shoot ratios) changes under elevated

atmospheric CO2 (Medlyn et al., 2001a).

3. Carbon sequestration

There is growing interest in the capacity of forest trees

and forest ecosystems to sequester carbon. This very com-

plex question has taken on a new level of importance with

the advent of tree planting (Fearnside, 1999; Rotter and

Danish, 2000; Van Kooten et al., 2000), improved forest

management (DeJong et al., 2000; Pinard and Cropper,

2000) and forest conservation (Pfaff et al., 2000) for carbon

emission credits are being publicly traded worldwide.

Carbon sequestration is a complex process that is difficult

to measure as growth, yield, net primary production, and C

turnover are often confused with C sequestration (Körner,

1995). Carbon sequestration by forests can be quantified on

the basis of their net ecosystem productivity (Jarvis, 1989;

Malhi et al., 1999; Scarascia-Mugnozza et al., 2001). This

is net primary productivity after subtracting the heterotro-

phic respiration caused by decomposition of above- and

below-ground litter. Hence, the net ecosystem productivity

is the amount of organic C immobilized in the forest

ecosystem as living woody biomass and as soil organic

matter over a given amount of time and per unit of land

surface (Scarascia-Mugnozza et al., 2001). Few forest tree

studies have as yet estimated impacts of elevated atmos-

pheric CO2 on carbon sequestration. However, observations

at two FACE studies suggest that soil respiration rates are

higher under elevated CO2 (King et al., 2001; Schlesinger

and Richter, 2001). Schlesinger and Richter (2001) suggest

that a large portion of the additional C added to soils is

likely returned to the atmosphere. They further point to the

fact that they are not seeing C accumulation in deeper

mineral soil layers in their loblolly pine stands exposed to

elevated CO2. Therefore, increased soil C sequestration of

trees growing in elevated atmospheric CO2 has not yet been

demonstrated.

4. Mineral cycling

It has been well documented that the nitrogen level in the

foliage of trees growing under elevated atmospheric CO2 is

generally decreased (Lindroth et al., 1993, 1997, 2001a). It

is also decreased in the litter (Norby et al., 2001b). How-

ever, the quantity of litter increases 20–30% under elevated

atmospheric CO2 (DeLucia et al., 1999). Less certain is

what is happening to nitrogen cycling (Zak et al., 2000;

Johnson et al., 2001). Among the greatest uncertainties for

nutrient cycling is whether or not nutrient mineralization

rates will change due to the higher quantity of CO2 in the

soils (Ceulemans and Mousseau, 1994). It is also uncertain

whether decomposition rates will be significantly impacted

by elevated CO2, although the bulk of literature in this area

suggests that the decrease in leaf litter N, coupled with an

increase in lignin concentration, results in a slower decom-

position rate (Norby et al., 2001b).

5. Water balance

Given that some 70% of all water vapor emitted from

terrestrial ecosystems passes through leaf stomata (Körner,

2000), there continues to be a great interest in how elevated

atmospheric CO2 affects stomatal conductance and forest

stand-level transpiration. Long-term studies of forest trees

have shown a significant 21% decrease in stomatal con-

ductance (Medlyn et al., 2001b) with elevated CO2. Because

of the increased size of trees under elevated atmospheric

CO2, the question remains: ‘Do trees use more water or less

water even if stomatal conductance is decreased (Scarascia-

Mugnozza et al., 2001)?’. Similarly, there is uncertainty

whether water use efficiency will really be improved in
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forest stands, as has been suggested from instantaneous

water use efficiency estimates from small and isolated trees

(Scarascia-Mugnozza et al., 2001). Stand-level transpiration

measurements for forest trees under elevated atmospheric

CO2 have only been made on a few species (Wullschleger

and Norby, 2001); this remains an important research need.

In conjunction with stand-level transpiration measurements,

estimates of groundwater content should be made to com-

plete the water balance picture.

6. Wood quality and chemical composition

Wood and pulp quality are known to be affected by

factors such as wood density, early versus late wood

amounts, juvenile wood, fiber length, branchiness, branch

thickness, and wood chemical composition. Very little is

yet known about the impacts of elevated atmospheric CO2

on wood quality or chemical composition. Oren et al.

(2001) reported a decrease in specific gravity from 0.52

to 0.48 g cm� 3 for loblolly pine being grown under

elevated CO2. The decrease was similar in magnitude to

what they reported for the same trees under fertilization.

Karnosky et al. (in press) and Anttonen et al. (2001)

reported no changes in lignin content, fiber length, hemi-

cellulose content, or cellulose content in samples from

young aspen trees exposed for 3 years to elevated CO2.

Similar results were reported for lignin by Blaschke et al.

(2001). To the best of my knowledge, no one has tested

pulp yields or pulping characteristics for forest trees grow-

ing under elevated atmospheric CO2. Certainly, the impacts

of elevated atmospheric CO2 on wood quality and chemical

composition for a cross-section of the major timber trees of

the world is a high priority for the pulp and paper, and

timber industries.

7. Phenology

Elevated atmospheric CO2 concentrations affect the phe-

nology of bud break and bud set, flowering time, length of

time to seed set, leaf senescence and drop, and branch and

shoot development rates (Jach et al., 2001). The most

thoroughly studied phenological events have been spring

bud break and autumn bud set. Bud break is either delayed

(Murray et al., 1994; Repo et al., 1996) or advanced (Repo

et al., 1996) under elevated atmospheric CO2. Similarly, the

date of bud set in the autumn can either be advanced

(Mousseau and Enoch, 1989; Murray et al., 1994) or

delayed (Karnosky et al., in press). Both timing of bud

break and bud set are important in determining frost and

winter hardiness of northern trees species (Repo et al., 1996;

Lutze et al., 1998; Wayne et al., 1998). Increased frost injury

(Repo et al., 1996; Lutze et al., 1998) and increased winter

dieback (Isebrands et al., 2001) have both been described

for trees growing under elevated atmospheric CO2 in north-

ern regions. Others have described a possible increased cold

hardiness for some trees growing under elevated atmos-

pheric CO2 due to the buildup of soluble sugars that may act

as cryoprotectants (Ögren et al., 1997). This variation in

CO2-induced phenology responses suggests that species

differences play an important role and that additional study

is needed to determine major trends in CO2 effects on

phenology.

8. Antioxidants and stress tolerance

Because of its capability to impact primary plant metab-

olism, increasing atmospheric CO2 has been predicted to

have profound and far-reaching consequences for the deli-

cate equilibrium between pro-oxidants and antioxidants

within the plant cell (Podila et al., 2001). Increasing CO2

could potentially reduce the basal rate of O2 activation and

reactive oxygen species formation within several plant cell

compartments through enhancing the pCO2/pO2 ratio at the

sites of photo-reduction, and also by progressively suppress-

ing photo-respiration in C3 plants (Podila et al., 2001). In

the long term, this could lead to a depressed antioxidant

status in plants with as yet undetermined impacts for overall

stress tolerance, which in large part are attributable to

antioxidants. Research is only beginning to show the com-

plexity of CO2 impacts on antioxidant production. For

example, both CO2-driven down-regulation (Polle, 1996;

Schwanz and Polle, 1998; Karnosky et al., 1998; Niewia-

domska et al., 1999; Wustman et al., 2001) and up-regu-

lation (Niewiadomska and Miszalski, 1995) of antioxidants

have been demonstrated.

As with the antioxidant data, the story developing with

CO2 impacts on stress tolerance is also complex. The

literature has examples of both enriched CO2-induced

increased (Wayne et al., 1998; Schwanz and Polle,

2001a,b) and decreased (Kull et al., 1996; Karnosky et al.,

1998; Wustman et al., 2001) oxidative stress tolerance.

Again, these responses are complex because of species

and genotypic differences (Badiani et al., 1998, 1999) and

because there is such a wide array of antioxidants produced

by plants (Podila et al., 2001). This is an area needing

additional research attention. With the advent of modern

molecular methods, significant progress has been made in

isolating antioxidant genes (Akkapeddi et al., 1999) and in

producing transgenic trees silenced or enhanced for specific

antioxidant genes (Barnes et al., 1999; Grover et al., 1999).

These transgenic trees could now serve to better test

hypotheses about up or down-regulation of specific antiox-

idant activities by elevated atmospheric CO2.

9. Pollutant interactions

While it is well known that atmospheric CO2 is increas-

ing globally (Keeling et al., 1995; IPCC, 2001), large areas
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of future forests will concurrently be exposed to other

anthropogenic atmospheric pollutants (Reilly et al., 1999).

These are rising at similar rates and include both nitrogen

oxides (Norby, 1998; Fowler et al., 1998, 1999a) and

tropospheric ozone (O3) (Fowler et al., 1999b; IPCC,

2001). Although low levels of nitrogen deposition may

stimulate the usual growth enhancement by CO2 fertiliza-

tion, particularly if the forest is growing on nutrient-poor

soils, excess nitrogen deposition can (a) erode leaf surface

waxes, (b) cause luxuriant autumn growth and lack of

proper winter hardening in conifers predisposing them to

early fall frosts and winter dieback, (c) induce leaching of

nutrients from foliage and soils, (d) alter nutrient and toxic

ion mobilization in the soil, and (e) alter soil pH (Norby,

1998). Furthermore, the nitrogen status of foliage is vital in

plant–pest interactions. Little is known about how forests

will react to elevated nitrogen deposition concurrently with

elevated atmospheric CO2 (Norby, 1998; Norby et al.,

1999).

Ozone, a regional pollutant that occurs down wind of

metropolitan areas around the world, is generated as a

secondary pollutant from reactions of nitrogen oxides and

volatile organic compounds in the presence of sunlight.

Highly toxic to plants, O3 alters leaf cuticle waxes, destroys

chlorophyll, breaks down rubisco, causes premature foliar

senescence, alters root–shoot ratios, impacts host–pest

interactions, and decreases growth and productivity (Chap-

pelka and Samuelson, 1998; Bortier et al., 2000).

Since pre-industrial times, background O3 levels have

risen about 36% (IPCC, 2001). Nearly one quarter of the

Earth’s forests is now subjected to O3 concentrations that

exceed 60 ppb, and it is likely that nearly one-half of the

Earth’s forests (17� 106 km2) will be subjected to similar

damaging concentrations by 2100 (Fowler et al., 1999a,b).

Thus, large areas of the world’s forests will eventually be

exposed concomitantly to elevated atmospheric CO2 and O3

(Barnes and Wellburn, 1998; Saxe et al., 1998). Since these

two gases generally induce opposite sets of physiological

responses, there is considerable uncertainty as to how tree

growth and productivity and forest ecosystem functions will

be affected by these two interacting pollutants (Barnes and

Wellburn, 1998; Saxe et al., 1998). The few studies done for

multiple years with trees planted in the ground have largely

shown that O3 offsets the growth enhancement of elevated

atmospheric CO2 both for hardwood trees (Broadmeadow

and Jackson, 2000; Isebrands et al., 2001) and conifers

(Broadmeadow and Jackson, 2000; Utriainen et al., 2000).

The magnitude of the O3 offset depends on the O3 sensi-

tivity of the species (Broadmeadow and Jackson, 2000;

Karnosky et al., in press) and the concentrations of each

pollutant, although research needs to be done with tree

species to characterize dose responses.

In the only open-air exposure system in the world

exposing forest stands to interacting atmospheric CO2 and

O3, researchers at the Aspen FACE project found that

1.5� ambient O3 offset the growth enhancement of + 200

ppm CO2 for trembling aspen and paper birch (Isebrands et

al., 2001; Karnosky et al., in press). Interestingly, this study

has shown consistent offsetting effects for a suite of host

responses including leaf surface wax production (Mankov-

ska et al., 1998; Karnosky et al., 1999), stress gene activa-

tion (Wustman et al., 2001), gas exchange (Karnosky et al.,

in press; Noormets et al., 2001a,b; Sôber et al., in press),

foliar chemistry (Lindroth et al., 2001), foliar retention

(Karnosky et al., in press), fine-root biomass production,

and fine-root turnover (King et al., 2001).

Initial evidence for ecosystem-level O3 offsets in net

primary production, litter decomposition, water use effi-

ciency, microbial enzymes, and microbial biomass is also

noted (Karnosky et al., in press). Certainly, there is a need to

study more species and more ecosystems under interaction

of CO2 and O3. There is also a need to carry on these FACE

studies to see if some of these O3 offsets continue or even

increase as these stands end their exponential phase of

growth and attain sexual maturity.

10. Heterotrophic interactions

Elevated atmospheric CO2 can substantially alter plant

chemistry and leaf surface properties. These, in turn, can

alter host/pest interactions. For example, it is well docu-

mented that levels of foliar N decline for trees growing

under elevated atmospheric CO2 (Cotrufo et al., 1998;

Norby et al., 2000; Lindroth et al., 2002). Elevated CO2

also alters C-based secondary metabolites, such as tannins

and phenolic glycosides (Lindroth et al., 2001). Further-

more, elevated CO2, alone or in combination with O3, can

significantly alter leaf surface wax chemical composition,

structure, and wettability (Mankovska et al., 1998;

Karnosky et al., 1999, 2002a). These alterations to leaves

and leaf surfaces, for trees exposed to elevated atmospheric

CO2, impact host–pest interactions with changes in fre-

quency of occurrence and/or feeding behavior in aphids

(Hamamelistes spinosus), aspen blotch miner (Phyllonor-

rycter tremuloidiella), forest tent caterpillar (Malacosoma

disstria), and the wood borer (Oberea schaumii) (Karnosky

et al., in press).

Certainly, there remain many knowledge gaps of host/

pest interactions under increasing atmospheric CO2. What

will happen to host–pest dynamics as global warming

accompanies elevated atmospheric CO2 so that pest ranges

expand to the north (Lincoln, 1993) into forests that have

not previously been exposed to such pests and as additional

life cycles of some insect pests increase their abundance?

Kurz and Apps (1999) believe that increasing disturbance

from insects, diseases, and fire in the Canadian boreal forest

has resulted in this large region changing from a carbon sink

to a carbon source in the past few decades. Certainly, more

work is needed to verify Kurz and Apps’ hypothesis and to

better understand insect and disease dynamics under ele-

vated atmospheric CO2.
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11. Community dynamics, biodiversity, and ecosystem

function

Constrained plant shoot and root architecture and, thus,

light, nutrient, and water captured in a competitive situation is

normal for forest trees and, hence, should be considered as a

prerequisite for realistic tree responses to CO2 enrichment

(Körner, 1995). Furthermore, there is no doubt that plant

species respond in rather different ways depending on their

age, neighbors, microbial partners, soil resources, and atmos-

pheric conditions so that the experimental negation of these

interactions and dependencies is wasteful or even worse,

creating a biased picture of the world (Körner, 1995). As

mentioned previously, two ways to escape the risks of

artifacts are: FACE systems over large forest stands or in situ

experimentation in natural forest communities around CO2

springs.

Effects of CO2 enrichment on forest tree competition,

understory soil productivity and biodiversity, and ecosystem

function are largely unknown. Few studies have been

conducted on a large enough scale and for a long enough

period of time to detect these effects, which are among the

most important for ecosystem function but also among the

most difficult to detect. Clearly, this area remains as high-

priority research for the future.

12. Modelling and scaling

Since the majority of physiological, gene expression, and

growth studies have been done with small trees growing

without competition, there is a need for more measurements

of CO2 enriched trees at the whole-tree level with larger

trees and at the canopy level with forest stands (Eamus and

Ceulemans, 2001). Several factors require careful consid-

eration when extrapolating data from studies of isolated

small trees to forests (Ceulemans et al., 1999; Norby et al.,

1999; Eamus and Ceulemans, 2001). These include (Norby

et al., 1999):

� Seedlings or saplings do not respond in the same way as

mature trees.
� Competition between trees for light and nutrients is

normal in forests but rare in studies of individual trees.
� Patterns of allocation between root, stem, and leaf differ

between immature and mature trees.
� The architecture of mature trees differs from that of

immature trees.
� Species composition, tree density and leaf area distribu-

tion in space and time may change in response to CO2

enrichment, and all of these factors influence gas

exchange in the canopy.
� There have been few successful attempts to relate

plant functional type to response functions to CO2

enrichment. Consequently, modeling ecosystem re-

sponse is limited to either dealing with mono-specific

plantations or assigning average responses to a mix of

species.

Process growth models, based on our best understanding

of basic physiological processes, stand out as the best

available tools to predict the impacts of elevated atmos-

pheric CO2 concentrations on forest trees and forest eco-

systems (Magnani and Matteucci, 2001), when time scales

and spatial scales preclude routine measurements at all

scales needed. For these process models to be useful, addi-

tional research is needed for several key processes that still

escape our understanding. Stomatal conductance, canopy-

level conductance, water balances in trees, tissue, and soil

respiration, and resource allocation patterns among forest

trees growing in closed canopy stands can only be repre-

sented in a very empirical way (Magnani and Matteucci,

2001), as are nutrient uptake, tissue mortality, and flowering

and seed production (Luo et al., 1999; Scarascia-Mugnozza

et al., 2001).

On an ecosystem and landscape level, models need to

incorporate respiration as a major determinant of the carbon

balance (Valentini et al., 2000). Another modeling need on

this level and above is to include elevated O3 as a concom-

itant stress in the next century. No major global model of

terrestrial net primary productivity includes O3 as a co-

occurring greenhouse gas (Karnosky et al., in press).
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Stomatal and nonstomatal control of photosynthesis in trembling aspen

(Populus tremuloides Mich.) exposed to elevated CO2 and O3. Plant

Cell Environ 2001a;24:327–36.

Noormets A, McDonald EP, Kruger EL, Isebrands JG, Dickson RE,

Karnosky DF. The effect of elevated carbon dioxide and ozone on leaf-

and branch-level photosynthesis and potential plant level carbon gain in

aspen. Trees: Struct Funct 2001b;15:262–70.

Norby RJ. Nitrogen deposition: a component of global change analyses.

New Phytol 1998;139:189–200.

Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R.

Tree responses to rising CO2 in field experiments: implications for the

future forest. Plant Cell Environ 1999;22:683–714.

Norby RJ, Long TM, Hartz-Rubin JS, O’Neill EG. Nitrogen re-sorption in

senescing tree leaves in a warmer CO2 enriched atmosphere. Plant Soil

2000;224:15–29.

Norby RJ, Todd DE, Fults J, Johnson DW. Allometric determination of tree

growth in a CO2 enriched sweetgum stand. New Phytol 2001a;150:

477–87.

Norby RJ, Cotrufo MF, Ineson P, O’Neil EG, Canadell JG. Elevated CO2,

litter chemistry, and decomposition: a synthesis. Oecologia 2001b;127:

153–65.
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