Table 1 Trends in annual snow accumulation at the Mount Logan ice core site				
Time interval	1736-1850	1851-2000	1948-2000	1976-2000
Trend (m per decade)	0.003	0.008	0.034	0.12
Significance level (%)	50	95	95	99

period of overlap between it and the Mount Logan time series, 1736–1991, there is no statistically significant correlation between them

The complex relationship between the Mount Logan time series, the PNA and the PDO identified in this paper is not unique. For example, the correlation between salmon productivity in Alaska and the PDO²⁴, although robust over the past 50 years, shows changes in correlation and phase when 300-year proxy reconstructions of North Pacific sea surface temperature and salmon abundance are compared²⁵. This complexity serves to highlight the need to constrain better the temporal and spatial variability of climatic modes, such as the PDO and PNA, using several independent proxies in order better to predict their evolution and their relevance to societal concerns^{2,26}.

The three-century-long snow-accumulation record from the Mount Logan site extends from the closing stages of the Little Ice Age to the warmest decade in the past millennium⁷. A statistically significant and accelerating positive trend has existed in this time series since the middle of the nineteenth century. This was preceded by a period of approximately 150 years in which there was no trend. The results that we have presented suggest that this trend is associated with a surface warming over western North America throughout the period for which we have good-quality surface data, 1870–2000. Furthermore, the Mount Logan time series is correlated with the PNA over the period for which we have good-quality information on its variability, 1925–2000. With respect to the PDO, there exists a statistically significant correlation only after the middle of the twentieth century. It therefore appears that the secular trend in the Mount Logan snow accumulation time series is associated with a long-term intensification of the PNA. Our analysis suggests that the PDO has undergone a similar intensification, but only since the middle of the twentieth century. Over the past 50 years, this relationship between the PNA and the PDO may have contributed to the observed rapid increase in snow accumulation at the Mount Logan site and the acceleration in the warming over northwestern North America.

Received 3 April; accepted 22 October 2002; doi:10.1038/nature01229.

- Wunsch, C. The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull. Am. Meteorol. Soc. 80, 245–255 (1999).
- 2. Alverson, K. et al. A global paleoclimate observing system. Science 293, 47-48 (2001).
- Kistler, R. et al. The NCEP-NCAR50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 82, 247–267 (2001).
- Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the northern hemisphere winter. Mon. Weath. Rev. 109, 784

 –812 (1981).
- Barnston, A. G. & Livezey, R. E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weath. Rev. 115, 1083–1126 (1987).
- Zhang, Y., Wallace, J. M. & Battisti, D. S. ENSO-like interdecadal variability: 1900-93. J. Clim. 10, 1004–1020 (1997).
- Esper, J., Cook, E. R. & Schweingruber, F. H. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295, 2250–2253 (2002).
- Blackmon, M. L. Climatological spectral study of 500 Mb geopotential height of northern hemisphere. J. Atmos. Sci. 33, 1607–1623 (1976).
- Smirnov, V. V. & Moore, G. W. K. Spatial and temporal structure of atmospheric water vapor transport in the Mackenzie River basin. J. Clim. 12, 681–696 (1999).
- Holdsworth, G., Krouse, H. R. & Nosal, M. in Climate since A.D. 1500 (ed. Jones, P. D.) (Routledge 1992).
- 11. Whitlow, S., Mayewski, P., Dibb, J., Holdsworth, G. & Twickler, M. An ice-core-based record of biomass burning in the Arctic and Sub-Arctic, 1750-1980. *Tellus Ser. B* 46, 234–242 (1994).
- Mayewski, P. A. et al. Ice-core sulfate from 3 northern-hemisphere sites—Source and temperature forcing implications. Atmos. Environ. Part A 27, 2915–2919 (1993).
- Moore, G. W. K., Holdsworth, G. & Alverson, K. Extra-tropical response to ENSO as expressed in an ice core from the Saint Elias Mountain range. Geophys. Res. Lett. 28, 3457–3460 (2001).
- Moore, G. W. K., Alverson, K. & Holdsworth, G. Variability in the climate of the Pacific Ocean and North America as expressed in an ice core from Mount Logan. Ann. Glaciol. (2002) (in the press).
- Mann, M. E. & Lees, J. Robust estimation of background noise and signal detection in climatic timeseries. Clim. Change 33, 409–445 (1996).

- Santer, B. D. et al. Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res. Atmos. 105, 7337–7356 (2000).
- Jones, P. D., New, M., Parker, D. E., Martin, S. & Rigor, I. G. Surface air temperature and its changes over the past 150 years. Rev. Geophys. 37, 173–199 (1999).
- Houghton, J. T. et al. (eds) IPPC Third Assessment Report, Climate Change 2001: The Scientific Basis (Cambridge Univ. Press, 2001).
- Kalnay, E. et al. The NCEP/NCAR40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).
- 20. Peixoto, J. P. & Oort, A. H. Physics of Climate (American Institute of Physics, 1992).
- Wallace, J. M., Zhang, Y. & Renwick, J. A. Dynamic contribution to hemispheric mean temperature trends. Science 270, 780–783 (1995).
- Trenberth, K. E. Recent observed interdecadal climate changes in the northern hemisphere. Bull. Am. Meteorol. Soc. 71, 988–993 (1990).
- Biondi, F., Gershunov, A. & Cayan, D. R. North Pacific decadal climate variability since 1661. J. Clim. 14, 5–10 (2001).
- Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. *Bull. Am. Meteorol. Soc.* 78, 1069–1079 (1997).
- Finney, B. P., Gregory-Eaves, I., Sweetman, J., Douglas, M. S. V. & Smol, J. P. Impacts of climatic change and fishing on Pacific salmon abundance over the past 300 years. Science 290, 795–799 (2000).
- 26. Mann, M. E. The value of multiple proxies. Science 297, 1481–1482 (2002).

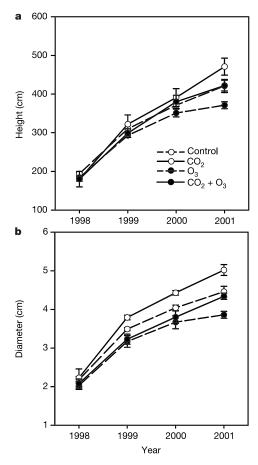
Acknowledgements The Mount Logan time series update was supported by the International Arctic Research Center, Fairbanks, the Geological Survey of Canada, the National Institute of Polar Research, Tokyo, and the Natural Sciences and Engineering Research Council of Canada. G.H. thanks M.N. Demuth, K. Supeene, E.J. Steig and S. Rupper for assistance in acquiring and analysing the ice core. The NCEP reanalysis data was provided by the Climate Diagnostics Center of the US National Oceanic and Atmospheric Administration. The HADCRUTv data was provided by the Climate Research Unit at the University of East Anglia.

Competing interests statement The authors declare that they have no competing financial interests.

Correspondence and requests for materials should be addressed to G.W.K.M. (e-mail: moore@atmosp.physics.utoronto.ca).

Altered performance of forest pests under atmospheres enriched by CO₂ and O₃

Kevin E. Percy*, Caroline S. Awmack†, Richard L. Lindroth†,
Mark E. Kubiske‡, Brian J. Kopper†, J. G. Isebrands§, Kurt S. Pregitzer||,
George R. Hendrey¶, Richard E. Dickson‡, Donald R. Zak#,
Elina Oksanen☆, Jaak Sober||, Richard Harrington**
& David F. Karnosky||


- * Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, Fredericton, New Brunswick, E3B 5P7, Canada
- † Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin 53706. USA
- ‡ North Central Research Station, US Forest Service, Rhinelander, Wisconsin 54501. USA
- § E7323 Highway 54, P.O. Box 54, New London, Wisconsin 54961, USA
- || School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA
- ¶ Brookhaven National Laboratory, 1 South Technology Street, Upton, New York
- # School of Natural Resources & Environment, The University of Michigan, 430 E. University, Ann Arbor, Michigan 48109, USA
- ☆ Department of Ecology and Environmental Science, University of Kuopio, 70211 Kuopio, Finland
- ** Plant and Invertebrate Ecology Division, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK

Human activity causes increasing background concentrations of the greenhouse gases CO₂ and O₃¹. Increased levels of CO₂ can be found in all terrestrial ecosystems². Damaging O₃ concentrations currently occur over 29% of the world's temperate and subpolar forests but are predicted to affect fully 60% by 2100 (ref. 3). Although individual effects of CO₂ and O₃ on vegetation have

letters to nature

been widely investigated, very little is known about their interaction, and long-term studies on mature trees and higher trophic levels are extremely rare⁴. Here we present evidence from the most widely distributed North American tree species⁵, *Populus tremuloides*, showing that CO₂ and O₃, singly and in combination, affected productivity, physical and chemical leaf defences and, because of changes in plant quality, insect and disease populations. Our data show that feedbacks to plant growth from changes induced by CO₂ and O₃ in plant quality and pest performance are likely. Assessments of global change effects on forest ecosystems must therefore consider the interacting effects of CO₂ and O₃ on plant performance, as well as the implications of increased pest activity.

Atmospheric CO₂ concentrations have risen by nearly 30% since the mid-1800s (ref. 6), and background levels of tropospheric O₃ have risen concurrently from $10{\text -}15\,\mu\text{l}\,\text{l}^{-1}$ a century ago to 30–40 $\mu\text{l}\,\text{l}^{-1}$ today⁷. Controlled exposure of trees to CO₂ or O₃ drives plant responses in different directions, producing stimulatory (CO₂) or inhibitory (O₃) effects on aboveground growth⁸. Increases or decreases in substrate availability due to CO₂ and O₃ change metabolic use of growth-limiting resources such as light, water and nitrogen, and also alter the physical and chemical quality of plant tissues. In turn, such changes can affect the performance of higher trophic levels, particularly insects⁹ and plant diseases¹⁰. Field-based investigations of the impacts of CO₂- and O₃-induced changes in tree quality on natural populations of pests and diseases have, however, only become possible since the development of free-air

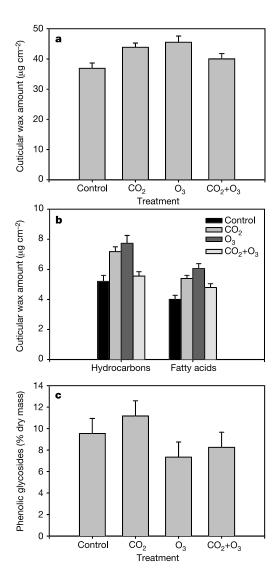


Figure 1 The effects of elevated CO_2 and O_3 on the growth of trembling aspen. Data are presented as means \pm 1 s.e. **a**, We note the divergence of height due to treatment in year four of fumigation, the height stimulation due to CO_2 and the height depression due to O_3 . **b**, Diameter growth due to treatment diverged earlier, after two years of fumigation.

carbon dioxide enrichment (FACE) technology11.

Here we report on the first free-air investigations into the impacts of increased CO₂ and O₃ on natural populations of forest insects and their natural enemies, and on natural outbreaks of tree diseases. The data we present link changes in physical and chemical plant defences with pest performance within the context of simultaneous treatment-induced changes to tree growth. To do this, we chose three model systems: one plant pathogen and two insects having widely different feeding strategies. The poplar leaf rust, *Melampsora medusae*, is common on aspen and belongs to the most widely occurring group of foliage diseases¹². The forest tent caterpillar, *Malacosoma disstria*, is a common leaf-chewing lepidopteran in North American hardwood forests¹³. The sap-feeding aphid, *Chaitophorus stevensis*, infests aspen throughout its range¹⁴.

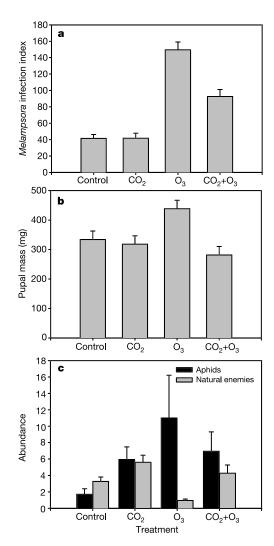

Our data show that enhanced CO_2 and O_3 had no effect on trembling aspen tree height in 1998 or 1999, but that by 2000, with the onset of canopy closure, height growth began to diverge among

Figure 2 The effects of CO_2 and O_3 on physical and chemical leaf defences in trembling aspen. Data are presented as means \pm 1 s.e. \mathbf{a} , Comparison of amount of the physical barrier (cuticular wax) produced showing the contradictory influence of O_3 alone or in combination with CO_2 . \mathbf{b} , Comparison of carbon allocation among major cuticular wax classes known to act as phytophagous insect deterrents or stimulants. \mathbf{c} , Concentrations of the important aspen defensive metabolites, phenolic glycosides (salicortin + tremulacin).

treatments (Fig. 1a). In 2001, four years after planting, trees grown in enhanced CO_2 were taller (P = 0.005), and those in enhanced O_3 were smaller (P = 0.001) than controls. Under $CO_2 + O_3$, the beneficial effects of CO2 negated the adverse effects of O3 (P = 0.278; Fig. 1a). Tree diameters, however, diverged almost immediately, and significant treatment effects continued through the 2001 growing season. Enhanced CO2 increased tree diameter (P < 0.06), enhanced O_3 decreased it (P < 0.06) and trees with enhanced $CO_2 + O_3$ did not differ from the controls (Fig. 1b). These four-year data support our premise that, based upon a 2100 scenario for CO₂ and O₃, aspen growth, survival and productivity will be greatly affected by these two air pollutants¹⁵. The implications are huge because, since the mid-1990s, aspen use has increased almost exponentially in the US Great Lakes Region and in the boreal mixed wood region of Canada, where the resource is now almost fully utilized16.

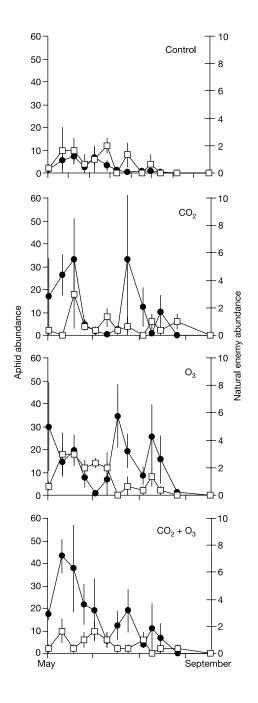

Because our tree performance data were gathered from a 'natural'

Figure 3 Effects of CO_2 and O_3 on one pathogen and two important herbivorous insects found on aspen **a**, *Melampsora medusae* infection; we note that rust increased on leaves exposed to O_3 relative to both the control and those exposed to CO_2 alone. A mid-range response was observed for leaves exposed to $\mathrm{CO}_2 + \mathrm{O}_3$. **b**, Performance of a lepidopteran, leaf-chewing insect, the forest tent caterpillar, as assessed by female pupal mass. We note the increased performance under O_3 and decreased performance under CO_2 , especially under high O_3 . **c**, Mean numbers of aphids and natural enemies (ladybirds, lacewings, spiders and parasitoids) per tree. Under O_3 , sap-feeding aphid numbers increased while their natural enemies simultaneously decreased.

ecosystem, we were able to monitor natural outbreaks of pests and diseases. We relate the impacts of CO_2 and O_3 on populations of insects and diseases to those on trees in the control rings (36011⁻¹ CO_2 ; 36.0–38.8 μ l1⁻¹ O_3 during the growing season (1998–2001) in the daytime (07:00–18:59) on average) because there are no 'pest-free' trees in our experiment.

We focused our initial effort on the leaf cuticle, an important defensive barrier against pests¹⁷. Exposure of aspen to enhanced CO_2 and/or O_3 greatly altered production (P < 0.0001) and chemistry

Figure 4 Long-term effects of enhanced CO_2 and O_3 atmospheres on the abundance of aphids (filled circles) and natural enemies (open squares) feeding on aspen. Aphid abundance increased significantly under elevated CO_2 and/or O_3 , while natural enemy abundance did not, although we note changes in the patterns of natural enemy population increases.

letters to nature

(P < 0.001) of cuticular waxes. Exposure to CO₂ or O₃ stimulated cuticular-wax production (16 and 23%, respectively) (Fig. 2a). Increasing C allocation to cuticular waxes owing to CO₂ (P = 0.0029) or O₃ (P = 0.0021), however, was negated under CO₂ + O₃ (P = 0.215) (Fig. 2a). Of particular relevance is that modifications to cuticular waxes determine the physicochemical characteristics of the plant surface on a scale relevant to plant-eating and insect-eating insects through action upon attachment, host location and host acceptance¹⁸. We show here that synthesis of fatty acids (which stimulate host recognition¹⁸) was increased by CO₂ (P = 0.0001) and O₃ (P = 0.0001) applied singly, as well as by CO₂ + O₃ (P = 0.037) (Fig. 2b). Coincidentally, both CO₂ (P = 0.0002) and O₃ (P = 0.0002) increased amounts of hydrocarbons (Fig. 2b), which are known to help insects recognize surfaces by increasing their responsiveness to chemical cues¹⁸.

Changes to plant defences under enhanced CO_2 and O_3 also involve changes in the chemical composition of the leaf tissue. Trembling aspen accumulates high concentrations of phenolic glycosides, which are of singular importance as protective agents against pests¹⁹. Phenolic glycoside concentrations increased under enhanced CO_2 (P=0.046), and decreased under enhanced O_3 (P=0.002) (Fig. 2c). The independent effects of CO_2 and O_3 were attenuated when the trees were exposed to both gases simultaneously. As CO_2 and O_3 obviously induced changes to aspen physical and chemical defensive characteristics, we next investigated the impacts of these changes in host quality on performance of the insects and diseases naturally infesting our aspen trees.

The role of cuticular wax as a physical barrier to protect leaves from fungal infection is well established²⁰. We have previously shown how O_3 alters aspen cuticular-wax structure and increases leaf wetting²¹; the latter is a function of the ratio of the most hydrophobic (hydrocarbons) to least (fatty acids) hydrophobic cuticular wax²². Rust infection increased fourfold under enhanced O_3 (P < 0.001, Fig. 3a). CO_2 alone did not alter rust occurrence. Interestingly, co-exposure did not completely offset the negative effects of O_3 , as infection remained almost threefold increased compared with the control leaves (P = 0.022). As yield loss due to Melampsora medusae can lead to reduction in diameter growth and delayed development of root systems²³, we suggest that the negative effects of O_3 environments on aspen productivity in Aspen-FACE (Fig. 1) were due to the interacting stresses of O_3 toxicity and increased leaf damage by M. medusae.

Historically, the forest tent caterpillar has defoliated more deciduous forest than any other insect in North America and regularly defoliates large areas (up to 26×10^6 ha) of early successional forests¹⁶. Outbreaks can reduce timber yield up to 90% in one year, and increase tree vulnerability to disease and environmental stress²⁴. Enhanced CO₂ (P = 0.020) reduced female pupal mass, particularly under high levels of O₃ (CO₂ × O₃ interaction, P = 0.046) (Fig. 3b). In contrast, O₃ fumigation improved tent caterpillar performance, increasing female pupal mass by 31% (P = 0.039). As large forest tent caterpillars produce more offspring than small individuals²⁵, the increase in pupal mass due to O₃ suggests that future outbreaks of this important forest pest will be more severe (under higher O₃ environments) than at present.

Changes in forest tent caterpillar performance may also affect interactions with higher trophic levels, because natural enemy performance frequently depends on size and quality of the prey. We chose aphids (and their natural enemies) for our population surveys of tritrophic interactions. Aphids were ideal for investigations of the impacts of $\rm CO_2$ and $\rm O_3$ on pest and natural enemy populations because aphids spend their entire life cycle on the trees in the FACE rings and the performance of multiple generations can be investigated during a single growing season. Population surveys revealed that, although aphid abundance was unaffected by $\rm CO_2$ and $\rm O_3$ (Fig. 3c), natural enemy densities were much larger (P < 0.001) under $\rm CO_2$ than under the control treatment. In

contrast, O_3 had a strong negative effect (P = 0.002) on natural enemies, but did not modify CO_2 effects (P = 0.241).

The long-term population surveys we conducted the following year showed that, despite the high variability associated with natural aphid infestations (a result of their exponential population growth rates), aphid abundance was, on average, significantly (P = 0.0231) greater on trees grown under enhanced O3 than on control trees (Fig. 4). Peak aphid populations also increased on trees grown under enhanced CO2; although in this case, the result was dependent on the sampling date and O_3 concentration (significant $CO_2 \times$ $O_3 \times$ date interaction; P = 0.019). In this long-term study, enhanced CO2 and O3 had no overall effect on the abundance of natural enemies (averaged over the growing season), but did affect the synchrony of natural enemies with their aphid hosts (Fig. 4). The long-term investigation of the impacts of enhanced CO₂ and O₃ on the population dynamics of aphids and their natural enemies clearly shows that aphid infestations were more severe on trees grown under enhanced CO₂, O₃ or CO₂ + O₃ atmospheres. Aphid populations under enhanced CO₂ and O₃ did not reflect the performance of individual aphids (which was unaffected by CO₂ and O₃) or the effects of CO₂ and O₃ on the nutritional or defensive quality of the leaf tissues (Fig. 2c); as aphids are phloem-feeders, this was not surprising. The effects of CO₂ and O₃ on aphid abundance did, however, correlate well with the increase in plant cuticular wax (Fig. 2a, b) and also reflected trends observed for M. medusae (Fig.

Populus tremuloides and its close relative European aspen, Populus tremula, are worldwide species, and important components of many forest ecosystems⁵. Our report represents the first ecosystem-level description of the combined effects of enhanced CO₂ and O₃ on the relationship between food quality and the long-term population dynamics of major forest pests. Here, we have shown the potential for a multitrophic effect, albeit for selected plant defences and pest taxa, within an ecologically important forest ecosystem grown under realistic exposure to future CO₂ and O₃ concentrations. From our results, we believe it important to emphasize that: (1) studies of the performance of individual herbivorous insects would not have allowed us to predict the long-term population dynamics of pest and natural enemy populations; (2) although natural enemy abundance may be affected by changes in CO₂ and O₃, the long-term regulation of pest populations by natural enemies appears to be less effective under enhanced CO₂ and/or O₃; (3) changes in pest dynamics reflect changes in leaf defensive qualities, particularly aspects of leaf quality such as changes in 'host signalling' at the leaf surface, with wider implications for host 'acceptance' by other pest/pathogen species; and (4) feedbacks to tree productivity are likely now occurring or will ensue and may modify forest responses to increasing CO₂ and O₃.

In its Third Assessment Report, the IPCC stated that "...the increase of greenhouse gas concentrations in the atmosphere can be reduced also by enhanced uptake of carbon through, for example, afforestation, reforestation, slowing deforestation, and improved forest, rangeland, wetland, and cropland management..."²⁶. Yet the degree to which terrestrial ecosystems will continue to be net sinks for carbon is highly uncertain, owing to the complex interactions among an array of natural and non-natural factors. We believe the assessments of carbon sequestration in woody biomass²⁷, without consideration of the importance of CO_2 and O_3 interactions and the potential for increases in populations of insects and diseases, will seriously overestimate the positive effects of enhanced CO_2 atmospheres on the productivity of northern forests.

Methods

The experiment

The Aspen-FACE site (32 ha) is located on a level to gently rolling sandy loam in northern Wisconsin, near Rhinelander (longitude, 89.7°, latitude, 45.6°), well within the natural range of the dominant experimental species, trembling aspen, *Populus tremuloides*

Michx. ²⁸. The FACE system was constructed in 1997, and has been used to fumigate (1998–2001) developing forest stands. The experiment consists of 12, 30-m-diameter FACE rings, assigned to factorial treatments of atmospheric CO₂ (ambient and 560 11^{-1} during daytime hours) and O₃ (ambient and 46.4 μ ll ⁻¹ to 55.5 μ ll ⁻¹ during the growing season (1998–2001) in the daytime (07:00–18:59) on average for the six O₃ treatment rings). The four treatments are arranged in a randomized complete block design, with three replications of each treatment. Each FACE ring is divided by a walkway system into three parts. In one half of each ring, we planted five trembling aspen genotypes of differing O₃ and CO₂ responsiveness. The other half of each ring is further divided into two quarters; one is planted with aspen and sugar maple, *Acer saccharum* Marsh., and the other is planted with aspen and paper birch, *Betula papyrifera* Marsh.; each FACE ring is planted at a 1 × 1 m spacing. In June 1997, 12,000 trees were planted inside the rings (1,000 trees per ring). The performance of our FACE exposure system, the growth responses of the trees and additional details of our experiment have been summarized in detail elsewhere ²⁸.

Tree height and diameter measurement

Tree height and diameter were measured at the end of each growing season, after leaf fall. Tree height was assessed using a telescoping height pole and diameter was assessed at 3 cm above the soil surface along two axes, using callipers¹⁵.

Plant assay methods

Cuticular waxes were recovered by chloroform washing from physiologically similar, fully expanded main lateral leaves collected from aspen trees growing within each ring. Wax amount ($10 \pm \mu g$) was expressed in relation to leaf surface area and quantitative leaf cuticular wax chemical composition was determined using gas chromatography (GC) and GC-mass spectrometry (MS) as described elsewhere²⁹.

Positive identification of *Melampsora medusae* Thuem. F. sp. *tremuloidae* was confirmed by observations of urediniospores using scanning electron microscopy (SEM) and/or light microscopy. Rust incidence was assessed in late September as percentage of infected leaves per tree and severity of rust occurrence per leaf. Their product was calculated as the incidence of infection ¹⁰.

Invertebrate surveys

Leaves used for phenolic glycosides determinations were collected during the fourth larval instar of forest tent caterpillar development. Foliage (2–3 g fresh mass) was excised at the petiole from each tree, flash frozen in liquid nitrogen, freeze-dried, ground, and stored at $-20\,^{\circ}\mathrm{C}$ before analysis. Levels of the phenolic glycosides salicortin and tremulacin were measured using high-performance thin-layer chromatography (HPTLC), with purified aspen salicortin and tremulacin as reference standards 30 . Forest tent caterpillar larvae were reared communally in large mesh bags until the fourth instar, at which time they were placed in individual mesh bags (five larvae per tree, three trees per ring) and reared to pupation.

Total numbers of aphids and natural enemies on seven aspen trees from each ring were counted. Data were $\log_{10} (n+1)$ transformed before analysis. No winged aphids were found on any of the trees; thus all aphids are likely to have been born and developed from the initial colonization of the trees by winged females early in the growing season. The natural enemies were mainly predators (such as Coleoptera and Neuroptera) and parasitic Hymenoptera. Although the data are likely to have underestimated the total number of natural enemies (particularly winged species) exploiting the aphid populations, they represent a snapshot of the population at the time of the survey. More comprehensive sampling (for example, by using insect traps) would have included natural enemies exploiting insects feeding on all the trees growing in the FACE rings, rather than aspenfeeding aphids. The long-term aphid and natural enemy population surveys used similar methods, except that data were collected from the lowest south-facing branch on each tree rather than from entire trees. In the previous survey, aspen aphids were found only on the lower branches; no aphids were ever found on the upper branches.

Statistical considerations

Data were analysed by general linear models analyses of variance (ANOVA). The Aspen-FACE experimental design, at the whole-plot (error d.f. = 6) level, is three replications of a randomized complete block design with four treatment combinations. We assume that replications are random effects, and treatments are fixed effects²⁸.

Received 17 April; accepted 11 July 2002; doi:10.1038/nature01028.

- IPCC Climate Change 2001: The Scientific Basis (Report of Working Group I of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 2001); available at http://www.ipcc.ch/pub/ spm22-01.pdf.
- Ciais, P., Peylin, P. & Bousquet, P. Regional biospheric fluxes as inferred from atmospheric CO₂ measurements. Ecol. Appl. 10, 1574–1589 (2000).
- 3. Fowler, D. et al. The global exposure of forests to air pollutants. Wat. Air Soil Pollut. 116, 5–32 (1999).
- McLaughlin, S. B. & Percy, K. E. Forest health in North America: Some perspectives on actual and potential roles of climate and air pollution. Wat. Air Soil Pollut. 116, 151–197 (1999).
- Perala, D. A. Silvics of North America Hardwoods (eds Burns, R. M. & Honkala, B. H.) Vol. 2 555–569 (USDA Forest Service, Washington, DC, 1990).
- Barnola, J. M. et al. CO₂ evolution during the last millennium as recorded by Antarctic and Greenland ice. Tellus B 47, 264–272 (1995).
- Finlayson-Pitts, B. J. & Pitts, J. N. Jr Chemistry of the Upper and Lower Atmosphere (Academic, San Diego, CA, 1999).
- Dickson, R. E. et al. Growth of five hybrid poplar genotypes exposed to interacting elevated CO₂ and O₃. Can. J. Forest Res. 28, 1706–1716 (1998).
- Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).
- 10. Karnosky, D. F. et al. Interacting CO_2 , tropospheric O_3 and predisposition of aspen Populus

- tremuloides Michx. to attack by Melampsora medusae rust. Glob. Change Biol. 8, 329-338 (2002).
- Hendrey, G. R., Ellsworth, D. S., Lewin, K. F. & Nagy, J. A free-air system for exposing tall forest vegetation to elevated atmospheric CO₂. Glob. Change Biol. 5, 293–309 (1999).
- Ziller, W. G. The Tree Rusts of Western Canada (Canadian Forestry Service Publication No. 1329, Victoria, British Columbia, 1974).
- Martineau, R. Insects Harmful to Forest Trees (Agriculture Canada, Canadian Forest Service, Quebec, 1984).
- USDA Forest Service Aphids (Forest Health Protection, Southern Region); available at http:// fhpr8.srs.fs.fed.us/idotis/insects/aphids.html (2001)
- Isebrands, J. G. et al. Growth responses of Populus tremuloides clones to interacting carbon dioxide and tropospheric ozone. Environ. Pollut. 115, 359–371 (2001).
- David, A. J., Zasada, J. C., Gilmore, D. W. & Landäusser, S. M. Current trends in the management of aspen and mixed aspen forests for sustainable production. Forest Chron. 77, 525–523 (2001).
- Jeffree, C. E. Plant Cuticles: An Integrated Functional Approach (ed. Kerstiens, G.) 33–82 (Bios Scientific, Oxford, 1996).
- Eigenbrode, S. D. Plant Cuticles: An Integrated Functional Approach (ed. Kerstiens, G.) 201–221 (Bios Scientific, Oxford, 1996).
- Lindroth, R. L. & Hwang, S.-Y. Diversity, redundancy and multiplicity in chemical defense system of aspen. Rec. Adv. Phytochem. 30, 25–56 (1996).
- Mendgen, K. Plant Cuticles: An Integrated Functional Approach (ed. Kerstiens, G.) 175–188 (Bios Scientific Oxford 1996)
- Karnosky, D. F. et al. Effects of tropospheric O₃ on trembling aspen and interaction with CO₂: results from an O₃-gradient and a FACE experiment. Wat. Air Soil Pollut. 116, 311–322 (1999).
- 22. Holloway, P. J. Chemistry of leaf waxes in relation to wetting, J. Sci. Fd Agric, 20, 124–128 (1969).
- Davis, C. & Meyer, T. Field Guide to Tree Diseases of Ontario (Natural Resources Canada, Canadian Forest Service, Sault Ste. Maire, Ontario, 1997).
- 24. Fitzgerald, T. D. The Tent Caterpillars (Cornell Univ. Press, Ithaca, New York, 1995).
- Parry, D., Goyer, R. A. & Lenhard, G. J. Macrogeographic clines in fecundity, reproductive allocation, and offspring size of the forest tent caterpillar Malacosoma disstria. Ecol. Entomol. 26, 281–291 (2001).
- IPCC Summary for Policymakers to Climate Change 2001: Synthesis Report of the Third IPCC Assessment Report (IPCC Secretariat, Geneva, Switzerland, 2001); available at http://www.ipcc.ch/ pub/SYR-text.pdf.
- Tuskan, G. A. & Walsh, M. E. Short-rotation woody crop systems, atmospheric carbon dioxide and carbon management: A U.S. case study. Forest. Chron. 77, 259–264 (2001).
- Dickson, R. E. et al. Forest Atmosphere Carbon Transfer Storage-II (FACTSII)—The Aspen Free-Air CO₂ and O₃ Enrichment (FACE) Project: An Overview (USDA Forest service General Tech. Rep. NC-214, St Paul MN, 2000)
- Percy, K. E., McQuattie, C. J. & Rebbeck, J. A. Air Pollutants and the Leaf Cuticle (eds Percy, K. E., Cape, J. N., Jagels, R. & Simpson, C. M.) 67–79 (Springer, Heidelberg, 1994).
- Lindroth, R. L., Kinney, K. K. & Platz, C. L. Responses of deciduous trees to elevated atmospheric CO₂: productivity, phytochemistry and insect performance. *Ecology* 74, 763–777 (1993).

Acknowledgements The FACTSII: Aspen FACE project is supported by the US Department of Energy-Office of Biological and Environmental Research (DOE-BER) through its Program for Ecosystem Research. The research described herein is supported by companion grants from the US Forest Service Northern Global Change Program, Michigan Technological University, the USDA National Research Initiatives Program, the Canadian Federal Panel on Energy Research and Development (PERD), Natural Resources Canada-Canadian Forest Service, the National Science Foundation, the Natural Environmental Research Council of the United Kingdom, the British Ecological Society and the Praxair Foundation. The Aspen FACE project is an experiment within the International Biosphere Geosphere Programme and the only open-air site in the world that combines the effects of CO₂ and O₃. It is a multi-agency, interdisciplinary project with 50 scientists from seven countries.

Competing interests statement The authors declare that they have no competing financial interests

Correspondence and requests for materials should be addressed to K.E.P. (e-mail: kpercy@nrcan.gc.ca).

Genetic mechanisms of floral trait correlations in a natural population

Jeffrey K. Conner

Kellogg Biological Station and Department of Plant Biology, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, Michigan 49060, USA

Genetic correlations among traits are important in evolution, as they can constrain evolutionary change or reflect past selection for combinations of traits^{1,2}. Constraints and integration depend on whether the correlations are caused by pleiotropy or linkage disequilibrium³, but these genetic mechanisms underlying correlations remain largely unknown in natural populations⁴. Quan-