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Abstract

ECOPHYS, an individual-based process model for poplar, requires a three-dimensional soil water redistribution model to simulate
soil water dynamics, plant uptake, and root growth. SOILPSI is a potential-driven water redistribution model based on the RHIZOS
rhizosphere simulator. It expands on RHIZOS by calculating water flux based on water potential, and has a macropore flow mode
to allow rapid drainage of the soil. SOILPSI simulates water flux in three dimensions and accounts for slope. SOILPSI was evaluated
by comparing model output to soil moisture data collected under bare soil conditions. AMMI analysis of a date× depth matrix of
differences between simulated and observed soil moisture content showed that excluding the two shallowest soil layers resulted in
a difference matrix that conformed to an additive model. The grand mean predicted values were within 2% of the observed values,
and 50 of 56 predicted values were within 5% of the observed values. Better agreements between simulated and observed soil
moisture content were observed deeper in the soil profile and later in the season. Agreement between SOILPSI and field conditions
was consistently more accurate than RHIZOS. Improving simulation of evaporative flux at the soil surface would improve simulation
accuracy in the upper horizons.
 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Forest crop process models, like agronomic models,
require reliable submodels of belowground processes.
Soil water redistribution is a critical process in simulat-
ing the movement of water and nutrients along the soil–
plant–atmosphere-continuum. Accurate, multi-dimen-
sional simulation of soil water redistribution is needed
to facilitate implementation and testing of root growth,
uptake and competition routines within mechanistic tree
growth models. One such model is ECOPHYS, an indi-
vidual tree, physiological process model for short
rotation poplar that incorporates explicit calculation of
light interception at the individual leaf level, response to
varying CO2, O3 and temperature levels, dynamic carbon
allocation, and varying crown architecture (Rauscher et
al., 1990). We have developed a soil water redistribution
model called SOILPSI to meet the belowground mode-
ling needs of ECOPHYS to simulate root–shoot interac-
tions within short rotation poplar plantations. Our linked
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model is based on a three-dimensional soil slab with a
user-specified volume ranging from 1 to 50 m3. It is cap-
able of simulating water addition to the soil slab via
natural rainfall, irrigation or a water table, as well as
water loss by evaporation or percolation through the bot-
tom layer of the soil slab. SOILPSI was developed for
a simulation cycle of approximately 10 years; the length
of a short-rotation harvest cycle (Hansen, 1990, 1992).
In this contribution, we describe SOILPSI and use it to
simulate water dynamics in a soil of known physical and
hydrologic properties, given the weather conditions from
the 1991 growing season. We evaluate the model output
in light of detailed soil moisture data collected from the
actual soil during the same period (Theseira, 1994). We
also provide a comparison of SOILPSI and RHIZOS, a
widely used agronomic crop model (Boone et al., 1995)
that served as the basis for SOILPSI.

2. Modeling approach

2.1. Introduction and general model description

The variety of modeling approaches and methods used
by scientists is a result of the complexity of biological
systems, differences in modeling priorities, methodolog-
ical trade-offs, strategies for bridging information gaps
and, sometimes, academic tradition (Sharpe, 1990). The
RHIZOS soil model has been well documented (Boone
et al., 1995) and has been selectively utilized in several
agronomic crop models such as GOSSYM (Baker et al.,
1983), GLYCIM (Acock and Trent, 1991), and
CALGOS (Marani et al., 1992). We selected RHIZOS as
a template for construction of our new model for several
reasons. The CERES-type crop models of Jones and
Kiniry (1986), the SWIF forest models (Bouten and
Witter, 1992), the BEANGRO, SOYGRO, and PNUT-
GRO group of models (Hoogenboom et al., 1992) all
utilize one-dimensional soil processes. RHIZOS, on the
other hand, simulates soil processes in two-dimensions
that correspond to a one-unit thick cross-section of the
crop row. We did not consider crop models that simulate
soil water as available and/or unavailable pools without
regard to spatial differentiation. Other crop models of
the EPIC/ALMANAC (Williams et al., 1983) group or
the QB-Maize models (Sinclair, 1991) simulate the plant
as a collection of biomass pools with no spatial compo-
nent. RHIZOS, however, possesses a belowground
framework that permits precise location of discrete root
segments from one or more distinct plants. Stand level
forest models such as PROGNOSIS (Schuster et al.,
1993) were not considered because they lacked the
ability to model individual trees.

SOILPSI and the RHIZOS (Boone et al., 1995) soil
model on which it is based share the detailed spatially
explicit modeling approach of the ECOPHYS model

(Rauscher et al., 1990). Our approach espouses the
development of fine-scale, mechanistic models of indi-
vidual soil–root–tree–air systems, which are conse-
quently scaled to patches, and thereafter, plantations of
poplar trees (Host et al., 1996). In this approach, stochas-
tic behavior is generated through inter-tree competition
for resources in the soil slab. This scenario is similar
to the ‘aggregation’ technique suggested by Acock and
Reynolds (1990) in which a heterogeneous ecosystem
is simulated using single tree models. In our approach,
however, a single soil slab may support a patch of trees
in direct competition. We can then simulate a plantation
by using multiple patches of variable composition (Host
et al., 1996).

It is generally accepted that the detail and accuracy
of any model is constrained by that of its component
modules. Because the ECOPHYS tree is discretely pro-
grammed in three-dimensional space, we chose to
develop a model with a three-dimensional soil slab (Host
et al., 1996). This architecture was designed to accom-
modate our three-dimensional discrete root segment
model currently functioning in ECOPHYS. With these
goals in mind, SOILPSI was developed, as a scaleable,
three-dimensional soil slab comprising a collection of
individual soil cells or voxels. The absolute size of indi-
vidual voxels is user-defined (e.g. 1–5 cm3) to allow
trade-offs between model resolution and computational
intensity. Water potential equilibration may be simulated
in one, two or three directions and can account for soil
slope. The model employs an hourly time step for water
content equilibration, drainage and water uptake by plant
roots. This time step synchronizes SOILPSI with plant
functions in ECOPHYS such as light interception,
photosynthesis, stomatal conductance, and consequently,
anticipated transpiration demand. Hourly or daily time
steps may be used for infiltration and evaporation,
depending on the resolution of rainfall, solar radiation
and temperature data available in the simulation.

2.2. Macropore flow

The role of macropores in infiltration and drainage is
receiving increased attention. This is evidenced by the
work of Glass et al. (1989), Hillel and Baker (1988), and
Beven and Germann (1982), and more recent studies by
Heijs et al. (1995), Li and Ghodrati (1995), and Ghodrati
and Jury (1992). To date, however, all characterization
attempts have required physical examination of the
structure and distribution of macropores of the soil in
question, and no method has been developed to estimate
soil water behavior in macropores from readily available
soil physical properties such as a desorption curve.
While it is generally understood that water flow in soils
wetted above field capacity occurs in both macropores
and micropores, SOILPSI treats infiltration and drainage
as macropore functions. SOILPSI incorporates the piston
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flow infiltration mechanism used in RHIZOS (Boone et
al., 1995), but adds an algorithm to iteratively distribute
infiltrating water equally to all non-saturated soil voxels
(in two dimensions) at the wetting front during any infil-
tration event. Voxels of the deepest infiltrated layer in
RHIZOS are sequentially saturated in one dimension
beginning under the furrow. Saturation progresses
toward the crop row until all infiltrating water is allo-
cated.

SOILPSI simulates drainage of soil water at a poten-
tial of greater than �0.03 MPa as macropore flow.
Drainage or percolation occurs between a soil voxel and
the one immediately below it, and is regulated by the
amount of void pores in the sink voxel. If the water table
is below the soil slab, drained water is permitted to exit
the slab. If the water table occurs within the soil slab,
it is treated as a sink for drained water. In either case,
the water table functions as an infinite sink for drainage
and as an infinite source of water when soil water poten-
tial in the overlying soil falls below �0.03 MPa.

2.3. Micropore flow

All soil water in SOILPSI is subject to three-dimen-
sional, potential gradient based equilibration. During
each time step, micropore flow based on soil water
potential difference is superimposed on any macropore
flow that might have occurred during that time step. We
calculate the matric potential of two adjacent soil voxels
(Fig. 1) from their volumetric water content with the soil
water content–soil water potential relationship given by
(1), developed by van Genuchten (1980):

Fig. 1. Flux between adjacent soil voxels is calculated using the
potential difference between the voxels and the geometric mean con-
ductivity of the voxels.

qi �
qr � (qs�qr)
(1 � (�ai�)b)g, (1)

where qi is the volumetric water content, �i the pressure
head (cm),qr the residual volumetric water content, qs

the saturated volumetric water content, a the coefficient
which has units of reciprocal pressure head (length-1),
b a dimensionless coefficient, and g is a dimensionless
coefficient related to b by g � 1�(1 /b). If any differ-
ence in elevation exists between the voxels, e.g. if the
voxels were one above the other, or side by side in the
direction of the soil slope, a commensurate gravitational
potential is added to the potential difference between the
voxels. The hydraulic conductivity used in calculating
the flux between the soil voxels is calculated using Eq.
(2) (van Genuchten, 1980):

K � Ksat(s)0.5(1�(1�sovm)g)2, (2)

where K is the hydraulic conductivity (cm h�1), Ksat the
saturated hydraulic conductivity (cm h�1), s � (q�
qr) / (qs�qr), g as defined in Eq. (1) previously, and
ovm � 1/g.

The unsaturated hydraulic conductivities of source
and sink voxels can vary by many orders of magnitude.
Because the arithmetic mean weights larger conductivity
values over smaller ones, we use the geometric mean
conductivity to calculate the inter-voxel flux. On the
other hand, the estimation of hydraulic conductivity
using the geometric mean can raise problems when an
extremely dry sink voxel radically attenuates the geo-
metric mean conductivity. Where the source and sink
voxels are equally dry, low conductivity is acceptable,
but where the source voxel is between saturation and
field capacity, the outcome of the geometric mean calcu-
lation does not reflect the true conductivity between the
voxels. When this occurs, we assume that a wetting front
exists between the voxels and that the flux is regulated
more by the high potential condition immediately behind
the wetting front than the low potential condition ahead
of it. Consequently, the conductivity of the source voxel
is used to calculate the resultant flux between the source
and sink voxels. If the magnitude of the flux between
the two voxels is such that a water potential equilibrium
will be achieved during that time step (hour), voxel
water content values are back calculated from the equi-
librium potential, and the sum of the water in the voxels
is proportionately allocated. Otherwise, the calculated
flux is applied and water is redistributed.

2.4. Water uptake by tree roots

We simulate a root system as a binary tree assemblage
of root segments whose ends (nodes) are defined by
coordinates in three-dimensional Cartesian space. This
modeling approach is similar to that of Diggle (1988).
The coordinates of the distal node of each root segment
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define the soil voxel in which it is located (Fig. 2). In
addition, each root segment has an age property that is
used to determine the root’s persistence, given its antici-
pated longevity. We simulated uptake in a method simi-
lar to that used for soil water redistribution. Root diam-
eter is modeled as a function of age, and growth
photosynthate is allocated according to the pipe model
theory (constant total cross-sectional area for transport)
proposed by Shinozaki et al. (1964). The length and
diameter of the root segment determine the surface area
through which transport may occur, while the age cohort
of the root determines the radial conductivity per unit
surface area of root. We establish a potential gradient
between the soil voxel and the plant root, and calculate
a soil to root water flux for a given soil voxel for that
time step. Because the model can distinguish between
the roots of individual trees, the proportions of nodes
from different trees, coupled with individual tree water
potentials, determines their competitive ability in a given
soil voxel. At the present time, transpiration demand
imposes a uniform matric potential on the entire root
system and potential differences within the root system
occur as a consequence of elevation of individual root
segments only (all roots within a given soil voxel pos-
sess the elevation of that soil voxel).

2.5. Evaporation from the soil surface

We patterned the evaporation subroutine after the
modified Penman model used in RHIZOS. We first cal-
culate potential evaporation using the Penman Equation.
We then calculate actual evaporation based on the soils’
ability to supply water to meet evaporative demand
(Boone et al., 1995). A critical input variable is the air–
dry soil moisture content, which is the level of soil
moisture at which no more water will be relinquished to
the atmosphere. Air–dry soil moisture content of surface
horizons can be estimated through simple drying experi-

Fig. 2. Cutaway of the soil slab depicting colonization of a given soil
voxel by roots from separate trees. Relative node density determines
competitiveness of a given tree for the water contained in the soil
voxel.

ments. In the event that such data are unavailable, the
user may specify a matric potential to which water may
be extracted.

2.6. Model inputs and outputs

The primary inputs to the model consist of hourly
weather data, soil properties, and several model control
parameters (Table 1). The simulation control parameters
specify the duration of the simulation, the number of
dimensions and the spatial resolution at which water
movement in the slab will be simulated. Hourly weather
data can be read directly from a file or generated using
a weather generator such as WGEN (Richardson and
Wright, 1984). Model output consists of a one-, two- or
three-dimensional array of soil moisture values,
depending on user selection.

An example of a 96-h simulation of a soil slab is
depicted in Fig. 3. In this simulation, the slab is initiated
at a uniform soil water content (field capacity) corre-
sponding to green in the color plates. To simulate evap-
oration, strong negative water potential is specified at the

Table 1
List of SOILPSI simulation inputs

Input Data range Units

Length of simulation �1 h
Number of dimensions in which to 1–3 Dimensions
equilibrate
Slab dimensions
Length �1 m
Width �1 m
Depth �1 m
Slab slope
Primary 0–45 Degrees
Secondary 0–45 Degrees
Number of horizons �0 Horizons
Depth to water table 0-Slab m

depth
Initial soil slab water content
One-dimensional 0-Saturation m3 m�3

Two-dimensional 0-Saturation m3 m�3

Three-dimensional 0-Saturation m3 m�3

Individual horizon properties
Thickness �0 cm
Saturated volumetric water content 0–1 m3 m�3

Residual volumetric water content 0–1 m3 m�3

Saturated hydraulic conductivity �0.0 cm h�1

Horizon α Generated cm�1

Horizon β Generated Dimensionless
Horizon λ Generated Dimensionless
Hourly solar radiation 0–2000 µmol m�2 s�1

Hourly rainfall �0 mm h�1

Hourly irrigation
Non-point source �0 mm h�1

Point source (source coordinates) �0 mm h�1

Sink cells
Point sink (sink coordinates) �0 cm H2O

(tension)
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Fig. 3. Graphical representation of data output of a 96-h simulation of a soil slab (a) containing a tap root system and subsurface drip irrigation
line. Boundary conditions include surface drying by evaporation, a water table at the base of the slab, constant irrigation rate and constant water
potential in the root system. The slab was initialized with a uniform median water content (green), which was rendered transparent in (b)–(d). In
this simulation the drying front advances downward from the soil surface and outward from the root system, while the wetting front advances
upward from the water table and outward from the irrigation line at (b) 24, (c) 48 and (d) 96 h.

upper surface of the soil slab. A water table, at zero
water potential, is specified as the lower boundary of the
soil slab. In addition, an array of voxels with negative
water potential was inserted to simulate a plant root sys-
tem, while another zone of voxels experiences an
addition of a fixed volume of water each time step to
simulate a subsurface drip irrigation line (Fig. 3(a)).
When the color green is rendered transparent in Fig.
3(b), (c) and (d), the range of colors from yellow to red
depict the advance of a drying front downward from the
soil surface, and outward from the root system at 24, 48,
and 96 h, respectively. During the same interval, the blue
color range depicts the progression of a wetting front
upward from the water table (consistent with capillary
rise) and outward from the subsurface drip irrigation
line.

2.7. Other modeling considerations

We coded SOILPSI in C++ to take advantage of
object oriented programming techniques and to interface
with the COM-based, object oriented C++ code of ECO-
PHYS (Host et al., 1999; Isebrands et al., 2000). We
define the soil slab as an object class with member
methods that permit the slab to infiltrate, drain, and equi-
librate. In this way, we can create many instances of a
soil slab to simulate a plantation with heterogeneous
soils (Host et al., 1999).

At the present time, we have not implemented changes
in soil physical characteristics due to freezing and thaw-
ing cycles. Soil water redistribution is deactivated when
the soil temperature is below freezing.



18 G.W. Theseira et al. / Environmental Modelling & Software 18 (2003) 13–23

3. Model evaluation

3.1. Field methods

There is a general paucity of published data on three-
dimensional water movement and distribution in a natu-
ral soil profile throughout a growing season. This is
primarily because of the large labor and equipment
requirement necessary to install, maintain and monitor
a large three-dimensional grid of soil moisture sensors
through a growing season. Data at scales covering one
or more square meters in area and extending a meter or
more into the soil are particularly scarce. A recent study
of multi-dimensional water flow utilized excavated and
repacked soils as well as in situ measurements beneath
a crop row (van Genuchten et al., 1991). While a dense
grid of sensors was employed, the use of reconstructed
soils added the possibility of altered physical and
hydrologic properties. In addition, the volume of soil
monitored has been relatively small (0.7 m deep and
extending 0.4 m laterally from the crop row). Further-
more, because the study focused on water uptake by
plant roots, water redistribution due solely to soil factors
was confounded by root extraction of soil water.

The field data we used for testing SOILPSI is part of
a larger data set collected to compare two-dimensional
water profiles under bare soil or cotton (Gossypium
hirsutum) cropped conditions, and three irrigation
regimes (Theseira, 1994). The study was conducted at
the Mississippi Agriculture and Forestry Experiment
Station research plots located on the north farm at Mis-
sissippi State University during the 1991 growing sea-
son. The soil was Marietta silt-loam (fine, loamy, sil-
iceous, thermic, Fluvaquentic, Eutrochrept) with less
than 2% slope with three horizons. The boundary
between the A and B1 horizons occurred at a mean depth
of 0.15 m and the B1–B2 horizon boundary occurred at
0.4 m. The plot design was a randomized complete block
containing six blocks and three irrigation regimes (no
irrigation, standard furrow irrigation, and alternate fur-
row irrigation). However, no irrigation was applied due
to excessive rain, such that each block contained three
replicate samples.

Families of 0.6, 0.9, and 1.22 m long piezometer tubes
indicated a seasonal mean water table depth of 1.1 m.
We installed neutron probe access tubes in each of the
18 plots as described in Fig. 4(a)–(c). These were read
on weeks 5, 6, 7, 10, 12, 14, 15 and 16 of the study for
a total of eight sampling dates. Each tube was read at
25, 40, 55, 70, 85, and 100 cm below the soil surface.
In addition, we collected a surface soil moisture sample
in each plot using a soil sampler of known volume,
resulting in soil water content measurements at seven
depths for each sampling interval (Fig. 5.) This provided
us with soil water content measurements at seven soil
depths.

Fig. 4. Location of neutron-probe access-tubes and drip irrigation
lines in (a) standard drip irrigated, (b) non-irrigated and (c) alternate
furrow irrigated plots.

Fig. 5. Depths at which soil moisture was measured with the neutron
moisture meter and fixed volume surface soil sampler.



19G.W. Theseira et al. / Environmental Modelling & Software 18 (2003) 13–23

3.2. RHIZOS and SOILPSI simulations

We conducted pressure plate desorption analyses on
soil samples taken from the study site to obtain paired
soil water content and matric potential values. We then
used the retc program (van Genuchten et al., 1991) to
generate the constants that characterize the soil water
content/soil water potential relationship as well as
hydraulic conductivity. These constants were used to
parameterize the simulated soils for both the RHIZOS
and SOILPSI models.

We simulated hourly soil water dynamics within a 2-
m deep soil slab underlying a bare soil surface with
RHIZOS and SOILPSI using 1991 weather traces
recorded at the Mississippi Agriculture and Forestry
Experiment Station at Mississippi State, Mississippi.
Because RHIZOS is not capable of stand-alone simul-
ation, the model was run within the 1991 release of the
GOSSYM cotton model without a cotton crop (Boone
et al., 1995). In both RHIZOS and SOILPSI simulations,
a water table was specified at 1.1 m in accordance with
piezometer observations. We also specified a constant
water potential limit of 1.5 MPa for evaporation loss
from the soil surface, based on laboratory measurements
of field samples.

3.3. Statistical methods

Model prediction accuracy was evaluated using the
Additive Main Effects-Multiplicative Interaction
(AMMI) procedure. AMMI analysis has been frequently
applied to experimental designs where true replication
of experimental units is implausible. AMMI analyses
have been used independently (Abamu et al., 1998;
Abamu and Alluri, 1998; Yadav et al., 1998; Annicchiar-
ico, 1997a; Oritz, 1996) or in combination with other
more traditional statistical methods (Annicchiarico,
1997b; Flores et al., 1996; Falkenhagen et al., 1996).
Willers et al. (1995), applied AMMI analyses to two-
way soil moisture data (depth by row position) to evalu-
ate the difference between measured and predicted soil
moisture at each depth/row position combination. In
doing so, they demonstrated that AMMI analyses could
be used to test differences between deterministic com-
puter model output and field observations if the data con-
formed to a two-way treatment structure. We used the
AMMI analysis to identify depths and date interactions
and to evaluate a 7 × 8 (soil depth by sampling date)
matrix of differences between observed water content
values (plot means) and model predictions (Table 2).

4. Results and discussion

4.1. Simulations evaluated

We found that approximately 14% of the elements in
the difference matrix had a 5% confidence interval that

included zero, indicating that simulation output did not
differ significantly from field data. These elements were
grouped at the deeper depths in the soil, and later in the
growing season. The remaining elements, as well as the
row and column means and the grand mean had confi-
dence intervals that did not include zero, indicating that
simulation output differed significantly from field data.
The 5% confidence interval described subsequently,
however, was rather strict, generally requiring differ-
ences between predicted and observed values to be less
than 1%.

The characteristic root test for interaction (Milliken
and Johnson, 1989) was used to test for interaction in
the 7 × 8 data matrix. The hypotheses Ho: l1 � 0, and
Ho: l2 � 0, where l1 and l2 are the coefficients of the
first and second multiplicative terms, respectively, were
rejected at the 0.01 critical point, indicating the presence
of interacting rows and/or columns. To gauge the pattern
of interaction, we generated type I and II interaction
plots of the data (Milliken and Johnson, 1989) using
depth and sampling date as the baseline. We also plotted
the AMMI residuals (difference between the data and
the predictions of the additive model) using the two
baselines described previously. The type I and II interac-
tion plots showed strong interaction between the first and
second depths and the rest of the depths. The residuals
plot showed that the magnitude and direction of the
residuals varied when either depth or date of sampling
was used as the baseline. In particular, the high degree
of variability in the residuals at the shallowest depth, and
to a lesser degree, the second depth, indicates that the
model responds differently at those depths than it does
for the other data points in the matrix.

Further characteristics of the interactions are shown
in the first and second set of eigenvectors associated with
the date and depth of sampling (Tables 3 and 4,
respectively). The eigenvectors associated with date of
sampling (Table 3) indicates that the second and poss-
ibly, the fourth sampling dates differ in response com-
pared with the other sampling dates. The second set of
eigenvectors point particularly to the difference in
response between the fourth and fifth sampling dates.
The two sets of eigenvectors associated with depth
(Table 4) corroborate the residual analysis described pre-
viously: the first and second sets of eigenvectors reflect
differences in the response of the shallowest and second
soil layers, respectively.

Removing the first and second depths from the differ-
ence table (Willers et al., 1995) and rerunning the
characteristic root test for interaction revealed that sig-
nificant interaction was absent from the remaining differ-
ence table. We then used the variance of the refitted
model to construct 1�a(a � 0.05) confidence intervals
for individual matrix elements, column means, row
means and the grand mean to test equivalency to zero
(Table 5). The 5% confidence intervals were rather strict,
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Table 2
Differences between observed and simulated volumetric soil moisture content (%)

Date of Depth of sampling
sampling

1 2 3 4 5 6 7

1 �8.25 2.69 �2.96 �1.70 �1.14 �1.23 �0.85
2 �11.69 2.75 �2.48 �0.89 �0.74 �0.71 �0.49
3 �4.99 4.19 �2.44 �1.54 �1.48 �1.48 �0.86
4 �7.83 4.46 �3.15 �1.92 �2.15 �2.12 �1.15
5 �4.93 2.18 �2.95 �1.70 �2.02 �2.13 �0.43
6 �9.77 2.47 �3.11 �1.72 �1.76 �1.75 �0.32
7 �8.14 2.41 �2.66 �1.78 �1.89 �2.31 �1.41
8 �7.84 2.54 �3.59 �2.39 �3.16 �3.41 �1.97

Table 3
First and second eigenvectors associated with date of sample collection

Eigenvector set

First Second

1 0.1055 �0.1968
2 0.7017 �0.0617
3 �0.3996 0.2039
4 �0.0579 0.7009
5 �0.4580 �0.5880
6 0.2964 �0.1475
7 0.0012 �0.1184
8 �0.1894 0.2076

Table 4
First and second eigenvectors associated with depth of sample

Eigenvector set

First Second

1 0.9019 �0.1697
2 0.0132 0.9101
3 �0.0992 �0.0442
4 �0.1717 �0.0870
5 �0.2432 �0.1866
6 �0.2619 �0.1430
7 �0.1390 �0.2795

ranging from 0.39% for the sampling dates means to
1.1% for the grand mean.

Table 6 shows the percent difference between
SOILPSI prediction vs. field observations by date and
depth. Fifty of 56 values (89%) fell within 5% of the
observed value, and most of the predictions were within
2–3% of observed values. Eight of 56 matrix elements
(14%) fit the strict limits (0.39–1.10%) imposed by a 5%
AMMI confidence interval. These elements were con-
centrated primarily in depth 7 or in the second sampling

Table 5
Confidence intervals for grand mean, row mean (sampling depth), col-
umn mean (sampling date) and individual element means

Confidence
interval (%)

Grand mean ±1.10
Row mean (mean of seven depths) ±0.42
Column mean (mean of eight sampling dates) ±0.39
Individual cells (single depth/sampling date ±1.10
combination

date. None of the row or column means had confidence
intervals that include zero. In the same way, the confi-
dence interval of the grand mean did not include zero.
This evaluation shows that SOILPSI leaves the soil sur-
face too wet (high negative differences in depth 1), while
depth 2 is too dry (positive differences). These layers
are the primary source of interaction in the difference
table. The remainder of the table (depths 3–7) shows a
more uniform negative difference, indicating that
SOILPSI water content predictions are generally higher
than observed values by between 1 and 3% in a majority
of the date-by-depth of sampling combinations. These
relatively small differences provide confidence that the
SOILPSI model performs well under non-cropped con-
ditions. In contrast, only 22 of the 56 values (59%) from
the RHIZOS simulation fell within 5% of the observed
values. Only two of the 56 matrix elements met the lim-
its of the 5% AMMI confidence interval. Moreover,
RHIZOS recorded a grand mean error in excess of 14%,
compared to a �2.03% grand mean error for SOILPSI.

4.2. Experimental considerations

Examination of the change in moisture content in the
field compared with SOILPSI and RHIZOS predictions
following rainfall events yields valuable information
about model performance during wetting and drying
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Table 6
Differences between observed and simulated volumetric soil moisture content (%) showing individual element values and row, column and
grand means

Date of Depth of sampling
sampling

1 2 3 4 5 6 7 Mean

1 �8.25 2.69 �2.96 �1.70 �1.14 �1.23 �0.85∗ �1.92
2 �11.69 2.75 �2.48 �0.89∗ �0.74∗ �0.71∗ �0.49∗ �2.04
3 �4.99 4.19 �2.44 �1.54 �1.48 �1.48 �0.86∗ �1.23
4 �7.83 4.46 �3.15 �1.92 �2.15 �2.12 �1.15 �1.98
5 �4.93 2.18 �2.95 �1.70 �2.02 �2.13 �0.43∗ �1.71
6 �9.77 2.47 �3.11 �1.72 �1.76 �1.75 �0.32∗ �1.44
7 �8.14 2.41 �2.66 �1.78 �1.89 �2.31 �1.41 �2.25
8 �7.84 2.54 �3.59 �2.39 �3.16 �3.41 �1.97 �2.83
Mean �7.93 2.96 �2.92 �1.71 �1.79 �1.89 �0.93 �2.03

∗Indicates that the a � 0.05 confidence interval about the mean includes zero

cycles. The differences between the times of peak water
content at a given soil depth show if the model is running
ahead of, or lagging behind, field conditions. Further-
more, times at which the model begins to deviate from
field conditions can point to weaknesses in the model
and oftentimes reveal how it needs amendment. It is
important to note that while RHIZOS and SOILPSI gen-
erated daily and hourly data, respectively, field con-
ditions permitted soil moisture sampling only on discrete
dates. Temporal patterns of soil moisture content from
the field and model simulations at seven depths are
presented in Fig. 6. Significant rain events during the
growing season are also depicted.

With the exception of the soil surface, soil moisture
content under bare soil conditions ranged between 0.25
and 0.43 m3 m�3 near saturation (during rainfall, and not
evident due to the interpolation curve). For this soil type,
water potential near field capacity was �0.033 MPa.
When the RHIZOS model deviated from field values, it
erred to the wet side of the soil moisture spectrum,
gradually increasing in error until water contents reached
values close to saturation (Fig. 6). In essence, RHIZOS
has difficulty draining water from voxels that are at or
above field capacity at the rate that soil is drained in the
field. In contrast, the SOILPSI simulations significantly
overestimated the soil moisture content at the soil sur-
face, slightly overestimated soil moisture at the 0.4, 0.55,
0.7, 0.85 and 1.0 m depths, and marginally underesti-
mated water content at the 0.25 m depth (Fig. 6). The
overestimation of moisture content at the soil surface
was due to the specified minimum dry-down value for
the surface horizon. Empirical determination of air–dry
soil moisture values would improve the prediction of
moisture content at the soil surface. Note also that the
0.25-m depth (depth 2) supplied water to the surface to
meet evaporative demand (days 198 and 218) once the
surface drying limit was reached. A more accurate deter-

Fig. 6. Observed (pooled row position means) and simulated
(RHIZOS and SOILPSI) soil moisture content at seven depths beneath
a bare soil surface. Observed data and RHIZOS output are on eight
selected days while SOILPSI output are daily maxima generated from
hourly data. Error bars on observed data denote one standard deviation.
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mination of surface air–dry moisture content would thus
improve model predictions at subsurface horizons as
well.

The drainage and wetting front algorithms of
SOILPSI, combined with potential-driven soil water
redistribution appear to solve the problem of water reten-
tion at levels exceeding field capacity observed in
RHIZOS. To illustrate this, a 12-h simulation of a water
pulse applied to soil at field capacity is shown in Fig.
7. The pulse moves through the upper 1 m of soil in
approximately 10 h. The surface soil moisture content
was below field capacity prior to the rain, and was wet-
ted to field capacity by the event. This wetting resulted
in a decrease in the amplitude of the water pulse in the
deeper depths. The remainder of the soil, however, was
already at field capacity. As a consequence, no change
in moisture content was noted as the pulse moved
through each layer. Field evaluation of this phenomenon
would require hourly measurements of soil water follow-
ing rainfall to characterize the depth-specific rates of
decay of water content to a quasi-equilibrium state.

Fig. 7. SOILPSI simulation depicting a pulse of elevated soil water
content at seven soil depths during the hours following a rain event.
Note the increase in surface soil moisture content following the event.
Subsurface layers were at field capacity and therefore show no increase
in wetness following passage of the water pulse.

5. Conclusion

The SOILPSI model uses water potential to redistrib-
ute water within a three-dimensional soil matrix on an
hourly time step. It accounts for both macropore and
micropore flow, and resolves a long-standing problem in
simulating water movement at the wetting front. In a
comparison of model predictions and field data, the pre-
dictions were generally within 2–3% of the observed
values. The largest prediction errors occurred in the sur-
face horizon, where a lack of a good estimate of air–dry
soil moisture led to an overestimation of soil moisture
content. Future activities in model development will
focus on root extraction of soil water as driven by tran-
spiration demand from the ECOPHYS canopy and
expressed through the root distribution throughout the
soil slab.
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