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Abstract. Anthropogenic O3 and CO2-induced declines in soil N availability could
counteract greater plant growth in a CO2-enriched atmosphere, thereby reducing net primary
productivity (NPP) and the potential of terrestrial ecosystems to sequester anthropogenic
CO2. Presently, it is uncertain how increasing atmospheric CO2 and O3 will alter plant N
demand and the acquisition of soil N by plants as well as the microbial supply of N from soil
organic matter. To address this uncertainty, we initiated an ecosystem-level 15N tracer
experiment at the Rhinelander (Wisconsin, USA) free air CO2-O3 enrichment (FACE) facility
to understand how projected increases in atmospheric CO2 and O3 alter the distribution and
flow of N in developing northern temperate forests. Tracer amounts of 15NH4

þwere applied to
the forest floor of developing Populus tremuloides and P. tremuloides–Betula papyrifera
communities that have been exposed to factorial CO2 and O3 treatments for seven years. One
year after isotope addition, both forest communities exposed to elevated CO2 obtained greater
amounts of 15N (29%) and N (40%) from soil, despite no change in soil N availability or plant
N-use efficiency. As such, elevated CO2 increased the ability of plants to exploit soil for N,
through the development of a larger root system. Conversely, elevated O3 decreased the
amount of 15N (�15%) and N (�29%) in both communities, a response resulting from lower
rates of photosynthesis, decreases in growth, and smaller root systems that acquired less soil
N. Neither CO2 nor O3 altered the amount of N or 15N recovery in the forest floor, microbial
biomass, or soil organic matter. Moreover, we observed no interaction between CO2 and O3

on the amount of N or 15N in any ecosystem pool, suggesting that O3 could exert a negative
effect regardless of CO2 concentration. In a CO2-enriched atmosphere, greater belowground
growth and a more thorough exploitation of soil for growth-limiting N is an important
mechanism sustaining the enhancement of NPP in developing forests (0–8 years following
establishment). However, as CO2 accumulates in the Earth’s atmosphere, future O3

concentrations threaten to diminish the enhancement of plant growth, decrease plant N
acquisition, and lessen the storage of anthropogenic C in temperate forests.

Key words: atmospheric CO2; atmospheric O3; Betula papyrifera; forest floor; microbial immobiliza-
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INTRODUCTION

Will greater rates of terrestrial net primary produc-

tivity (NPP) be sustained as CO2 accumulates in Earth’s

atmosphere? This question lies at the heart of our ability

to predict the extent to which carbon (C) storage in

terrestrial ecosystems might counterbalance anthropo-

genic CO2 emissions over the next century (Houghton et

al. 2001). Nevertheless, a clear answer to this simple

question remains elusive, despite concerted efforts to

understand the mechanisms by which atmospheric CO2

might alter the C balance of terrestrial ecosystems (Luo

et al. 2006). Although short-term exposure (i.e., years) to

elevated CO2 increases the growth of many plants, much

of the uncertainty surrounding this issue stems from

potential interactions between atmospheric CO2 and

other environmental factors that may, over longer

periods of time (i.e., decades and centuries), offset the

positive effect of CO2 on plant growth. Anthropogenic

O3 and CO2-induced declines in soil nitrogen (N)

availability (i.e., progressive N limitation sensu Luo et

al. 2004) are two factors that could potentially diminish

or eliminate greater plant growth in a CO2-enriched

atmosphere, thus constraining the long-term storage of

anthropogenic CO2 in terrestrial ecosystems.

Over the next century, O3 in Earth’s lower atmosphere

is expected to attain concentrations (;65 nL/L) that will

elicit phytotoxic effects across the Northern Hemisphere

(Fowler et al. 1998, 1999). Recent analyses indicate that

O3 concentrations already present in this region (;40 to

70 nL/L) can reduce plant growth by 5–18%, with the
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largest reduction occurring in the belowground growth

of temperate and boreal trees (Grantz et al. 2006).

Boreal and temperate forests in the Northern Hemi-

sphere are a globally important C sink (Ciais et al. 1995),

and by 2100, ;60% of them could be exposed to

damaging O3 concentrations (Fowler et al. 1999).

Because atmospheric CO2 and O3 will increase concom-

itantly over this period, it is plausible that future O3

concentrations could lessen or nullify the effect of

elevated CO2 on plant growth, also diminishing the

potential to store anthropogenic CO2 in northern

temperate forests.

Although anthropogenic O3 can diminish the positive

effect of atmospheric CO2 on plant growth (King et al.

2005), it is not clear how these trace gases will combine

to alter plant N demand and whether the supply of soil

N can satisfy plant demand over the short and long

term. Developing an understanding of this interaction is

important, because plants in N-poor soil increase

growth to a lesser extent under elevated CO2 than those

in N-rich soil (Zak et al. 2000, Reich et al. 2006). This

observation implies that the supply of soil N will

constrain plant growth enhancement, and hence ecosys-

tem C storage, in a CO2-enriched atmosphere. Further-

more, if elevated CO2 alters plant detritus in such a way

that decomposition slows and N availability to plants

declines as some have argued (Field 1999, Luo et al.

2004, Hungate et al. 2006), then such a response could

dampen future plant growth as atmospheric CO2

accumulates. Nevertheless, empirical evidence for this

argument is variable (Luo et al. 2006), and it is uncertain

how exposure to both CO2 and O3 will alter the supply

of N from soil organic matter as well as plant N

demand.

In the Rhinelander (Wisconsin, USA) free air CO2-O3

enrichment (FACE) experiment, greater NPP has been

sustained in developing forest communities exposed to

elevated CO2, but elevated O3 has counteracted this

response (King et al. 2005). Moreover, elevated CO2 has

increased gross N mineralization and microbial N

immobilization to an equivalent extent, leading to more

rapid rates of soil N cycling but no change in the supply

of soil N to plants (Holmes et al. 2006). In contrast,

elevated O3 has reduced gross N mineralization, but it

has not altered microbial N immobilization (Holmes et

al. 2006), suggesting a decline in the supply of N to

plants. Our primary objective was to quantify the extent

to which changes in soil N cycling elicited by elevated

CO2 and O3 have altered the flow of N among plants,

soil microorganisms, and soil organic matter in devel-

oping northern temperate forests. Specifically, we set out

to answer the following questions. Does exposure to

elevated CO2 alter plant N-use efficiency, and hence N

demand? Do plants acquire equivalent amounts of soil

N under ambient and elevated CO2? Or, does greater

belowground growth under elevated CO2 increase the

acquisition of soil N by plants? Do plants exposed to

elevated O3 acquire lower amounts of soil N due to a

decline in belowground growth (King et al. 2005), a

decreased supply of soil N (Holmes et al. 2006), or a

combination of both? To accomplish our objective and

answer the aforementioned questions, we initiated an

ecosystem-scale 15N-labeling experiment to trace the

flow of mineralized NH4
þ into plants, soil microorgan-

isms, and soil organic matter in young forests exposed to

elevated atmospheric CO2 and O3.

METHODS

Research site

Our study was conducted at the Rhinelander FACE

(free air CO2-O3 enrichment) facility located near

Rhinelander, Wisconsin, USA (49840.50 N, 89837.50 E,

490 m elevation). Mean annual temperature is 4.98C,

mean annual precipitation totals 810 mm, and wet

atmospheric-N deposition (from 1987 to 2005) averages

4.5 6 0.84 kg N�ha�1�yr�1(mean 6 SD). The experiment

was established on a site with level topography and

sandy-loam soil. Twelve 30-m-diameter FACE rings

were constructed in a 32-ha field, with a minimum

distance of 100 m between any two rings. Each ring was

assigned to factorial CO2 (n ¼ 2) and O3 (n ¼ 2)

treatments in a randomized complete-block (n ¼ 3)

design (Dickson et al. 2000). Target concentrations of

CO2 and O3 were applied during daylight hours

throughout the growing season (May through October).

Elevated CO2 was maintained near 560 lL/L (200 lL/L
above ambient) and elevated O3 was maintained at an

average 50–60 nL/L (30–40 nL/L above ambient;

Karnosky et al. 2005). Each ring was divided into east

and west halves. The east half of each FACE ring was

planted with five genotypes of trembling aspen (Populus

tremuloides Michx.) that differ in O3 sensitivity and CO2

responsiveness. The west half of each ring was further

divided into north and south quadrants. Northwest

quadrants were planted with alternating aspen (geno-

type 216) and sugar maple (Acer saccharum Marsh.),

and the southwest quadrant was planted with aspen

(genotype 216) and paper birch (Betula papyrifera

Marsh.) (details available online).5 Small individuals of

each species (;10–15 cm tall) were planted in 1997 at a

1-m spacing, and, by 2003, canopy closure occurred in

mixed aspen and aspen–birch sections. At that time,

trees had attained heights of ;5 m.

At the initiation of the experiment, one ceramic-cup

tension lysimeter was located at depths of 5, 30, and 125

cm in each plant community to sample soil water and

quantify leaching losses. Soil-water samples were col-

lected twice a month throughout the 2004 growing

season. Prior to the first collection date and on each

subsequent collection date, a tension equivalent to soil

matric potential for that sampling interval (�0.05 to

�0.06 MPa) was applied to each lysimeter (King et al.

2001). We used water from the lysimeters placed at 125

5 hhttp://aspenface.mtu.edu/ring_maps.htmi
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cm in each FACE ring (n¼3, one in each ring section) to

estimate leaching losses of N and 15N.

15N tracer experiment

In June 2003 each 30-m-diameter FACE ring was

labeled with tracer quantities of 15N. Backpack sprayers

were used to evenly dispense (0.034 L/m2) a dilute

solution of 15NH4Cl (99.98% 15N) over the forest floor.

We applied 15NH4
þ to follow the movement of NH4

þ

released during microbial mineralization into plants, the

soil microbial community, and soil organic matter. The

isotope was applied at the rate of 15 mg 15N/m2, which

represents ;3% of the inorganic N pool in mineral soil

(0–10 cm depth). Immediately following application to

the forest floor, 1.6 L/m2 of water was applied to rinse

the 15N into mineral soil. Soil and plant samples were

collected one week prior to and one year following (June

2004) isotope addition. This enabled us to determine the

natural abundance of 15N in plant and soil pools, and

the extent to which they had been enriched by tracer
15N. We allowed this tracer to flow among plant and soil

pools for one year, and then we quantified the amount

and distribution of 15N and N in aspen and aspen–birch

communities. Below, we describe the collection of plant,

forest-floor, and mineral-soil samples as well as how we

calculated the amount of tracer 15N each ecosystem

pool.

N and 15N in aboveground plant pools.—To account

for vertical variation in N and 15N content within the

overstory canopy, we sampled current-year shoots (20–

25 cm in length) at four canopy levels: 75% to maximum

canopy height, 50% to 75%, 25% to 50%, and below

25%. Canopy access was gained using a scaffold (7 m in

height) located in each FACE ring that extended into

each community type; canopy levels were identified

using a height pole marked at 0.5-m intervals. At each

canopy level, we collected one shoot sample from a

randomly selected individual of each aspen genotype (n

¼ 5) in the aspen community. From randomly selected

individuals in the aspen–birch community we collected

two aspen shoot samples and two birch shoot samples.

Shoot samples consisted of newly formed leaves, 4–6

mature leaves, and the small appending twigs; these

plant tissues were frozen and transported to the

laboratory for analysis. Following the collection of

these samples, the vertical distribution of leaf area in

aspen and aspen–birch communities was determined

using a laser range finder (D. S. Ellsworth, unpublished

data); leaf area profiles were measured in all FACE

rings.

In the laboratory, leaf mass per area (LMA) was

measured by removing 5–8 disks (0.5 cm in diameter)

from each leaf. Leaves were separated from associated

twigs; both were dried at 658C, weighed, and ground to a

fine powder. Leaves and twigs were analyzed for N

concentration and d15N using a Delta plus isotope ratio

mass spectrometer (Thermo-Finnigan, San Jose, Cal-

ifornia, USA) interfaced to a NC2500 elemental

analyzer (CE Elantech, Lakewood, New Jersey, USA).

Using the diameter of each tree in aspen and aspen–

birch communities, total leaf biomass was estimated

using species-specific allometric equations derived from

the destructive harvest of whole trees in 2004 (King et al.

2005). We then used the vertical distribution of leaf area

and LMA determined for each canopy level to partition

total leaf biomass, generated via allomatric equations,

among the four canopy levels. Total twig biomass was

estimated by multiplying the twig-to-leaf ratio in each

canopy level by leaf biomass. In each canopy level, leaf

and shoot N content (g N/m2) were calculated as the

product of tissue N concentration (in milligrams of N

per gram, mg N/g) and biomass (in grams per square

meter, g/m2). Additionally, we estimated 15N in leaves

and twigs in each canopy level as the product of atom

percent (hereafter, atom %) excess 15N, tissue N

concentration, and biomass (in grams per square meter,

g/m2). For each tissue, atom % excess 15N was calculated

as the difference between the atom % 15N one year after

isotope addition and the atom % 15N prior to isotope

addition. Values were summed across canopy height

levels to generate total canopy N and 15N content.

The N concentration and d15N of new stem tissue

were determined by collecting a 15-mm diameter core,

which extended from the stem surface into the newly

formed bark and wood. This portion of the stem was

easily penetrated by the sharpened coring device, unlike

the harder wood produced from the previous year’s

growth (D. R. Zak, personnel observation). One stem

core was removed from two individuals of each aspen

genotype in the aspen community. In the aspen–birch

community, stem samples were collected from two aspen

and two birch, the same individuals used for canopy

sampling. The N concentration and d15N of each stem

sample was determined as described above. We estimat-

ed stem increment as the difference in stem biomass

between 2004 and 2003, a value determined using the

diameter of each tree in the aspen and aspen–birch

communities and allometric equations for stem biomass

(King et al. 2005).

Understory vegetation also was sampled prior to, and

one year following, isotope addition (Bandeff et al.

2006). This enabled us to estimate the amount of N and
15N contained in this portion of the aspen and aspen–

birch communities. The aboveground biomass of

understory vegetation was harvested from four 0.5-m2

areas randomly located in each community. Harvested

plants were sorted by species and analyzed for N and
15N as described by Bandeff et al. (2006).

Recovery of 15N (%) in overstory leaves, twigs, stem

increment, and roots was the amount of 15N in each

pool (mg 15N/m2), relative to the total amount we

applied (15 mg 15N/m2); recovery in understory vegeta-

tion was calculated in the same manner.

N and 15N in root and soil pools.—At the time of

canopy sampling, we collected forest floor and mineral-
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soil samples to determine the distribution of 15N in these

pools. We randomly located two points in each ring

section to sample forest floor. A 26 3 26 cm sampling

frame was placed on the forest floor, and Oi and Oe

material was removed, placed on ice while in the field,

and then frozen. This material was thawed at a later

date, dried at 608C, and analyzed for N and 15N.

In each plant community we also collected eight soil

cores (5 cm in diameter and 20 cm deep) at previously

established random locations. Soil samples consisted of

Ap- and B-horizon material; they were composited

within each community and immediately placed on ice.

Composite soil samples were immediately processed to

separate roots from mineral soil. Roots were initially

removed by hand, placed in a polyethylene bag, and

frozen. A subsample of the remaining soil was elutriated

to remove the remaining fine roots (sensu Pregitzer et al.

2000). Roots initially removed by hand and those

elutriated from the subsample were sorted into size

classes for further analysis (,0.5 mm, 0.5–1.0 mm,

.1.0–2.0 mm, and .2.0 mm). Roots in each size class

were dried, ground, and separately analyzed for N and
15N using a using a Delta plus isotope-ratio mass

spectrometer interfaced to a NC2500 elemental analyzer

(Thermo Finnegan, San Jose, California, USA). We

report root N and 15N as the summation of values across

all size classes.

The remaining root-free soil was used to determine

the distribution of N and 15N among mineral-soil pools.

To accomplish that task, we used a sequential extraction

method to separate inorganic N, dissolved organic N,

microbial N and soil organic N (sensu Holmes et al.

2003). Extractable NH4
þ, NO3

�, and dissolved organic

nitrogen (DON; depth, 0–20 cm) were initially separated

from microbial N and soil organic N. A 12-g (fresh

mass) soil subsample from the composite collected in

each community was placed in a 30-mL glass vial to

which we added 20 mL of 2 mol/L KCl. The vials were

capped, placed on a shaker for 20 minutes and

centrifuged for 15 minutes at 800 rpm (136g). Particulate

organic matter and suspended cells were removed from

the KCl solution by passing them though the 0.45-lm
filter; the resulting filtrate contained inorganic N and

DON. The extraction was repeated with a second 20-mL

aliquot of 2 mol/L KCl. The filter from each syringe was

placed back into the vial containing the corresponding

soil. Filtrates were stored at 48C prior to analysis.

Ammonium-N and NO3
�-N were sequentially dif-

fused from the KCl extracts onto acid traps in

preparation for 15N analysis (Brooks et al. 1989).

Following diffusion of inorganic N, we used alkaline

persulfate digestion to convert DON into NO3
�, which

was subsequently diffused onto an acid trap as described

above. The acid traps containing NH4
þ, NO3

� and DON

were analyzed for atom% 15N on a Finnigan Delta Plus

isotope-ratio mass spectrometer with a Conflo II

interface (Thermo Finnigan, San Jose, California,

USA). Ammonium-N and NO3
�-N concentrations were

determined prior to diffusion using an OI Analytical

Flow Solution 3000 continuous-flow analyzer (OI

Analytical, College Station, Texas, USA). Following

alkaline persulfate digestion, DON (measured as NO3
�)

was measured using automated colorimetry as described

above.

A second extraction step was performed to separate

microbial N and soil organic N. Previously extracted

soils and filters (containing microbial cells) were

fumigated with CH3Cl for 5 d in a vacuum desiccator.

Residual CH3Cl was removed by repeated vacuuming,

and 20 mL of 0.25 mol/L K2SO4 was then added to each

vial. Vials were capped, placed on a shaker 30 minutes,

and centrifuged for 15 minutes at 800 rpm (136g). The

supernatant was decanted into a 120-mL specimen cup.

This extraction was repeated with an additional 20-mL

aliquot of K2SO4, and the extracts were frozen until they

were digested to determine microbial N. The soil

samples remaining in the vials were dried to a constant

mass at 608C in a forced-air oven. The dried soils were

transferred to grinding jars, pulverized with stainless

steel pins (0.5 cm diameter 3 13.8 cm length) in a roller

mill (Model 755RMV [U.S. Stoneware, East Palestine,

Ohio, USA]), and stored for analysis of organic N.

Microbial N within the K2SO4 extracts was deter-

mined by alkaline persulfate digestion (Cabrera and

Beare 1993). Blanks and glycine standards were digested

simultaneously with samples. A 3-mL aliquot of each

digest was used to determine NO3
�-N concentration, as

described above. Nitrate-N in the remaining digest was

captured on acid traps during a 5-d diffusion with MgO

and Devarda’s alloy (Fisher Scientific, Fair Lawn, New

Jersey, USA). The acid traps were analyzed for atom %
15N by isotope-ratio mass spectrometry. Soil organic-N

concentration was measured using a CE Instruments

NC2500 elemental analyzer (CE Elantech, Lakewood,

New Jersey, USA), and atom % 15N was then

determined by isotope-ratio mass spectrometry. Nitro-

gen concentration, atom % 15N, and bulk density were

used to calculate recovery of 15N (in percentage, %) and

estimate the N pool (in grams of N per square meter, g

N/m2) in extractable NH4
þ, extractable NO3

�, extract-

able DON, microbial N, and soil organic N.

Recovery of 15N (%) in forest-floor and soil pools was

calculated as the amount of 15N in each pool (mg
15N/m2), relative to the total amount we applied to (15

mg 15N/m2) to forest floor and mineral soil.

Leaching of N and 15N.—We quantified the N

concentration and d15N of NH4
þ, NO3

�, and DON in

soil water collected at a depth of 125 cm in each FACE

ring. Soil-water samples composited across plant com-

munities and were processed using the diffusion

procedure described above to separate NH4
þ, NO3

�,

and DON.

Statistical analyses

We used an ANOVA for a split-plot, randomized,

complete-block design to determine whether CO2, O3 or
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their interaction altered the biomass, N concentration,

N content and recovery of 15N in plant or soil pools in

the aspen and aspen–birch communities. We also

inspected data for departures from normality and

homogeneity of variance, and, when needed, we

transformed data to meet these assumptions. Treatment

and interaction means were compared using a Fisher’s

protected LSD procedure, and significance for all

analyses was accepted at a ¼ 0.05.

RESULTS

Ecosystem N pools

Community type did not interact with atmospheric

CO2 or O3 to influence the biomass, N concentration, or

N content of any ecosystem pool, indicating that aspen

and aspen–birch communities responded in the same

manner to these gases. There also was no significant

interaction between atmospheric CO2 and O3 on the

biomass, N concentration, or N content of plant and soil

pools.

However, atmospheric CO2 and O3 exerted significant

main effects on plant biomass and N content (Table 1),

but not on tissue N concentration. For example,

elevated CO2 increased overstory biomass by 46%;

increases of similar magnitude also occurred in leaves,

twigs, stem increment, and roots (Table 1). Although

elevated CO2 did not increase the biomass of understory

plants, it did significantly increase total plant biomass

(overstoryþ understory) by 46% (Table 1). We observed

no effect of atmospheric CO2 (main effect) on forest-

floor biomass or soil organic matter (Table 2). In

contrast, elevated O3 caused significant declines in the

biomass of leaves (�25%), twigs (�17%), stem increment

(�27%), and roots (�18%), which resulted in a signifi-

cant overall decrease in overstory biomass (�23%; Table

1). Elevated O3 did not influence the biomass of

understory plants, nor did it alter forest floor or soil

organic matter (Tables 1 and 2).

Elevated CO2 did not alter the N concentration (in

milligrams of N per gram, mg N/g) of any ecosystem

pool (Tables 1 and 2), whereas elevated O3 only reduced

the N concentration of understory plants and soil

extractable NH4
þ and NO3

� pools (Tables 1 and 2).

Although these atmospheric gases exerted little influence

on N concentration, they did exert significant main

effects on the N content (g N/m2) of overstory trees,

albeit in opposite directions. For example, the N content

of overstory trees increased 45% under elevated CO2,

whereas elevated O3 resulted in a 29% decline (Table 1).

These are directional responses that can be observed in

all components of overstory biomass. Because neither

CO2 nor O3 altered the N concentration of leaves, twigs,

TABLE 1. The main effects of atmospheric CO2 and O3 on the biomass, nitrogen concentration, and nitrogen content for overstory
and understory plants.

Ecosystem
component

Atmospheric CO2

Biomass (g/m2) N concentration (mg N/g) N content (g N/m2)

�CO2 þCO2 �CO2 þCO2 �CO2 þCO2

Overstory 1099a (240.5) 1644b (315.7) 12.4a (2.93) 18.0b (3.93)

Leaves 421.9a (78.9) 592.2b (123.2) 21.6a (1.91) 22.0a (1.63) 9.1a (2.29) 13.1b (3.03)
New twigs 194.6a (41.9) 289.1b (41.3) 8.4a (0.95) 8.5a (0.52) 1.6a (0.51) 2.2b (0.42)
Stem increment 300.0a (111.1) 452.0b (156.3) 4.8a (0.54) 4.5a (0.50) 1.4a (0.44) 2.0b (0.66)
Roots 183.2a (50.7) 291.1b (55.6) 7.4a (0.80) 6.7a (0.99) 0.36a (0.09) 0.54b (0.24)

Understory 59.1a (17.1) 53.0a (31.5) 20.3a (1.48) 21.4a (2.00) 1.2a (0.35) 1.0a (0.75)
Total plant 1158a (231.6) 1697b (304.3) 13.6a (2.75) 19.0b (3.53)

Notes: There was no two-way interaction of community type with either CO2 or O3, nor was there a significant three-way
interaction among these factors. Values are main-effect means with standard deviations in parentheses; within rows, main-effect
means with the same superscript lowercase letter are not significantly different at a ¼ 0.05. Blank cells indicate results were not
possible.

TABLE 2. Main effects of atmospheric CO2 and O3 on the biomass, nitrogen concentration, and nitrogen content of soil pools.

Ecosystem
component

Biomass (g/m2) N concentration (lg N/g) N content (g N/m2)

�CO2 þCO2 �CO2 þCO2 �CO2 þCO2

Forest floor 659.8a (163.3) 749.6a (163.1) 12 691a (1735) 11 956a (2168) 8.41a (1.79) 9.05a (2.27)
Soil organic matter 5713a (646.9) 5754a (636.9) 909.2a (75.41) 935.8a (123.81) 181.8a (15.1) 187.2a (24.7)
Microbial biomass 7.1a (1.36) 7.6a (0.79) 1.41a (0.27) 1.52a (0.16)
Extractable NH4

þ 1.9a (0.62) 1.8a (0.67) 0.39a (0.12) 0.36a (0.13)
Extractable NO3

� 0.6a (0.23) 0.4a (0.27) 0.11a (0.05) 0.09a (0.05)
Extractable DON 1.5a (0.43) 1.7a (0.47) 0.30a (0.09) 0.34a (0.09)

Notes: There was no two-way interaction of community type with either CO2 or O3, nor was there a significant three-way
interaction among these factors. Values are main-effect means with standard deviations in parentheses; within rows, main-effect
means with the same superscript lowercase letter are not significantly different at a¼ 0.05. Blank cells indicate that results were not
possible.
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wood, or roots, changes in overstory N content can be

attributed to increases and decreases in overstory

growth under elevated CO2 and O3, respectively. Despite

their relatively large effect on overstory N content, CO2

and O3 (as main effects) did not alter the N content of

understory plants, forest floor or mineral soil pools

(Tables 1 and 2).

Recovery of 15N in ecosystem pools

Mean total recovery of 15N ranged from 78% to 79%

and did not differ significantly from 100% across

treatments (Table 3), indicating that we could account

for the majority of isotope added to the aspen and

aspen–birch communities. One year after application,

the majority of added 15N resided in forest floor (;40%)

and soil organic matter (;25%), with much smaller

amounts in plant (;12%) and microbial (,1%) biomass

(Table 3). The recovery of 15N in ecosystem pools was

not influenced by any two-way or three-way interaction

among community type, CO2, or O3.

However, as a main effect, atmospheric CO2 signif-

icantly increased 15N recovery in the overstory trees, but

it did not alter 15N recovery in any other ecosystem

pool. Under elevated CO2, canopy leaves contained 28%

more 15N than did leaves grown at ambient CO2 (Table

3). Although twigs, stem increment, and fine roots

contained more 15N under elevated CO2, those increases

were not significant (Table 3). However, in combination,

these trends amounted to a 35% increase in the amount

of 15N recovered in overstory trees growing under

elevated CO2, a response that was statistically significant

(Table 3). The recovery of 15N in understory vegetation

was relatively small (2–3%) and was not influenced by

atmospheric CO2. Elevated CO2 increased
15N recovery

by 29% in total plant biomass (overstory plus understo-

ry), but that increase was not significant. Atmospheric

CO2 had no effect on 15N recovery in forest floor or in

any soil pool (Table 3).

As a main effect, atmospheric O3 did not influence
15N recovery in any plant or soil pool (Table 3), with the

exception of the small, but significantly greater, recovery

of 15N in extractable NH4
þ and NO3

� pools (Table 3).

Concentrations of NH4
þ (0.04 6 0.01 ug N/mL; mean

6 SD), NO3
� (0.1 6 0.08 ug N/mL) and DON (0.3 6

0.22 ug N/mL) in soil water collected from lysimeters

were routinely low in all treatment combinations,

suggesting that leaching loss of N was minimal. For

example, if we assume that all annual precipitation (74

cm in 2004) moved below the rooting zone, then

leaching of NO3
� (0.06% of applied 15N) and DON

(0.08% of applied 15N) can only account for a small

proportion of the isotope we applied.

DISCUSSION

Greater plant growth in a CO2-enriched atmosphere

could increase the storage of anthropogenic C in

terrestrial ecosystems, but projected O3 concentrations

and CO2-induced declines in soil N availability could

TABLE 1. Extended.

Atmospheric O3

Biomass (g/m2) N concentration (mg N/g) N content (g N/m2)

�O3 þO3 �O3 þO3 �O3 þO3

1554a (365.5) 1190b (337.0) 17.7a (4.04) 12.6b (3.18)

592.2a (143.4) 441.9b (90.9) 22.8a (1.33) 20.8a (1.54) 13.1a (3.11) 9.1b (2.19)
265.6a (55.3) 218.1b (63.6) 8.7a (0.71) 8.2a (0.73) 2.1a (0.56) 1.7b (0.50)
435.2a (127.7) 316.8b (159.4) 4.6a (0.49) 4.9a (0.53) 1.9a (0.51) 1.5b (0.70)
260.9a (70.2) 213.4b (46.6) 7.4a (1.03) 6.7a (0.72) 0.55a (0.24) 0.35b (0.08)

43.2a (10.8) 69.0a (28.7) 21.7a (1.77) 20.1b (1.50) 0.8a (0.31) 1.4a (0.64)
1597a (364.9) 1259b (330.3) 18.6a (3.88) 14.0b (3.11)

TABLE 2. Extended.

Biomass (g/m2) N concentration (lg N/g) N content (g N/m2)

�O3 þO3 �O3 þO3 �O3 þO3

758.3a (155.5) 651.1a (164.9) 12 534a (1922) 12 113a (2054) 9.52a (1.83) 7.94b (1.96)
5847a (677.6) 5621a (581.5) 958a (102.8) 887a (89.6) 191.6a (20.6) 177.4a (17.9)

7.7a (0.77) 7.0a (1.32) 1.54a (0.15) 1.40a (0.26)
2.4a (0.27) 1.4b (0.49) 0.47a (0.05) 0.28b (0.11)
0.7a (0.12) 0.3b (0.18) 0.14a (0.02) 0.06b (0.04)
1.6a (0.36) 1.5a (0.54) 0.33a (0.07) 0.31a (0.11)
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counteract this effect (Fowler et al. 1999, Luo et al.

2004). After eight years of CO2 exposure, developing

aspen and aspen–birch forests obtained greater amounts
of soil N as well as 15N, despite no apparent increase in

soil N availability (Holmes et al. 2006). Therefore,

elevated CO2 increased the ability of plants to exploit

soil for this growth-limiting nutrient, which appears to
result from a larger root system. This response has

undoubtedly sustained higher rates of net primary

productivity (NPP) in aspen and aspen–birch commu-
nities exposed to elevated CO2, relative to those growing

at the ambient atmospheric concentration (King et al.

2005). In contrast, elevated O3 had an opposite effect,

wherein plants exposed to this trace gas experience a
decline in growth and acquired less soil N and 15N.

Because CO2 and O3 did not interact to influence plant

growth (King et al. 2005) or the amount of N and 15N in
plant and soil pools, our results imply that elevated O3

could reduce the ability of plants to grow and acquire N

from soil as CO2 increases in the atmosphere. The fact

that plants exposed to elevated CO2 obtained greater
amounts of soil N indicates that progressive N limitation

(sensu Luo et al. 2004) has not occurred in these

developing forest communities—at least not yet.

Greater rates of plant growth under elevated CO2

could be sustained by an increase in N-use efficiency

(Gill et al. 2002, Hungate et al. 2006); however, several

pieces of evidence indicate that elevated CO2 did not

increase the efficiency of N use (biomass produced per
unit of N assimilated) in aspen and aspen–birch

communities. First, elevated CO2 has not altered

biomass allocation in these communities or fine-root
turnover (Pregitzer et al. 2000, King et al. 2005),

indicating above- and belowground litter production

under elevated CO2 increases proportionally with plant

biomass. If elevated CO2 had increased plant N-use

efficiency, then such a response would be accompanied

by a measurable decrease in the N concentration of

some plant tissue. In contrast to this prediction, the N
concentration of overstory leaves, twigs, stem increment

and roots was unaltered by elevated CO2; the same was

true for the aboveground portion of understory plants.

In our experiment, plants exposed to elevated CO2 grew
to a greater extent via enhanced rates of photosynthesis

(Karnosky et al. 2003, King et al. 2005) and a greater

exploration of soil for limiting resources (i.e., N as well
as 15N), rather than an increase in plant N-use efficiency.

Our observations are consistent with those in young

sweet gum (Liquidambar styraciflua) and loblolly pine

(Pinus tieda) forests exposed to elevated CO2 (Finzi et al.
2006, Norby and Iversen 2006); in both cases, elevated

CO2 increased the N content (as g N/m2) of overstory

trees via greater belowground growth, with no or

minimal change in plant N-use efficiency (Finzi et al.
2006, Norby and Iversen 2006). Moreover, elevated CO2

has not altered soil N availability in our experiment as

well as beneath sweet gum or loblolly pine in the
experiments mentioned above (Zak et al. 2003, Finzi et

al. 2006). If soil N availability has not increased under

elevated CO2, then how did plants growing under

elevated CO2 obtain more N from soil to sustain NPP?
In all three rapidly developing forests, greater rates of

NPP under elevated CO2 appear to have been sustained,

in part, by a more thorough exploitation of soil by a

larger root system (Matamala and Schlesinger 2000,
Norby et al. 2004, King et al. 2005). In our experiment,

it is unlikely that the increment of N plants acquired

under elevated CO2 resulted from greater specific root

uptake (i.e., ug N�groot�1�s�1), because elevated CO2 does
not alter the uptake kinetics in the fine roots of either

aspen or birch (Rothstein et al. 2000; A. Friend,

unpublished data). Rather, elevated CO2 may have

TABLE 3. The main effect of atmospheric CO2 and O3 on the recovery of 15N in ecosystem pools one year following isotope
addition.

Ecosystem
component

15N recovery (%) 15N recovery (%)

�CO2 þCO2 �O3 þO3

Overstory 7.4a (1.34) 10.0b (2.08) 9.4a (2.35) 8.0a (1.80)

Leaves 5.0a (0.94) 6.4b (1.38) 6.1a (1.2) 5.2a (1.31)
New twigs 0.9a (0.38) 1.26a (0.38) 1.1a (0.37) 1.1a (0.45)
Stem increment 0.5a (0.21) 0.6a (0.30) 0.5a (0.19) 0.5a (0.32)
Roots 1.0a (0.48) 1.8a (1.46) 1.6a (1.47) 1.2a (0.68)

Understory 2.8a (0.83) 3.2a (2.08) 2.8a (1.49) 3.2a (1.68)
Total plant 10.2a (1.66) 13.2a (2.88) 12.2a (2.87) 11.3a (2.67)
Forest floor 40.1a (12.36) 37.6a (10.09) 42.0a (11.10) 35.7a (10.63)
Soil organic matter 20.1a (8.34) 26.1a (7.68) 22.4a (7.96) 24.0a (9.06)
Microbial biomass 0.8a (0.58) 0.9a (0.24) 0.9a (0.54) 0.7a (0.31)
Extractable NH4

þ 0.2a (0.14) 0.2a (0.11) 0.2a (0.14) 0.1a (0.10)
Extractable NO3

� 0.0a (0.01) 0.0a (0.03) 0.0a (0.02) 0.0b (0.00)
Extractable DON 0.5a (1.10) 0.1a (0.10) 0.2a (0.18) 0.4a (1.11)
Total recovery 78.2a (14.39) 78.7a (11.48) 78.7a (14.08) 79.2a (11.90)

Notes: Data are means (with SD in parentheses). The recovery of isotope in each pool was calculated as the amount of 15N in
that pool (mg 15N/m2), relative to the total amount applied to forest floor and soil (15 mg 15N/m2). There was no significant
interaction between community type and either atmospheric CO2 or O3, nor was there a significant three-way interaction among
these factors. Values are main-effect means with standard deviations in parentheses; within rows; main-effect means with the same
superscript lowercase letter are not significantly different at a¼ 0.05.
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enabled a larger root system to more effectively

encounter and penetrate N-rich microsites, thereby

facilitating foraging for this limiting resource (Johnson

et al. 2006). Additional support for this idea comes from

the positive relationship between annual N uptake and

cumulative fine-root length in sweet gum, further

suggesting that plants obtained greater amounts of soil

N under elevated CO2 by occupying soil to a greater

extent (Norby et al. 2004). Despite these responses,

greater soil occupancy will diminish through time as

forests mature and fine roots exploit soil to a full extent.

This point will be a critical juncture determining whether

greater rates of NPP will be sustained in a CO2-enriched

atmosphere. If elevated CO2 does not increase plant N-

use efficiency or soil N supply when roots have fully

occupied soil, then plant growth enhancement may be

constrained by soil N availability at this point in

development.

However, one does not need to invoke mechanisms

creating a greater N supply under elevated CO2 (e.g.,

greater N2 fixation or organic-N uptake) to account for

the additional N obtained by plants in our experiment.

The additional N obtained by plants growing under

elevated CO2 was much less than the variability that

exists in the supply of soil N to plants (i.e., net N

mineralization). For example, plants growing under

elevated CO2 acquired ;0.7 g N�m�2�yr�1 more than

those growing under ambient CO2. Net N mineraliza-

tion in Lake States forests ranges from 5 to 12 g

N�m�2�yr�1 and coefficients of variation are 20 to 45% (n

¼ 59 stands; Zak and Pregitzer 1990, Reich et al. 1997).

Inasmuch, the additional N plants acquired under

elevated CO2 lies well within the bounds of variability

for even the most N-poor forests in this region (e.g., 1

SD ranges from 1.0 to 2.2 g N�m�2�yr�1). Although

annual net N mineralization has not been measured in

our experiment, evidence suggests this soil is not N poor.

Rates of gross N mineralization and immobilization in

Rhinelander (Wisconsin, USA) FACE soil are equiva-

lent to those in Lakes States forests with relatively high

net N mineralization (8–10 g N�m�2�yr�1; Holmes and

Zak 1999, Holmes et al. 2006). These higher rates and

their associated variability further suggest that spatial

variation in N supply can well account for the additional

N obtained by a plant under elevated CO2. Our

argument implies that N loss via leaching should be

greater under ambient CO2; however, variation in plant

water use between communities and treatments as well

as variation in soil properties (e.g., thickness of a clay-

rich subsurface horizon) make it difficult to resolve

whether N leaching differs between ambient and

elevated CO2.

Although substantial amounts (;60%) of 15N were

recovered in forest floor and soil organic matter after

one year, we have no evidence that greater litter

production under elevated CO2 has accelerated the net

microbial immobilization of N into soil organic matter.

Such a response would presage a decline in soil N

availability, and this clearly has not occurred in our

experiment. For example, elevated CO2 did not alter the

recovery of 15N in forest floor or soil organic matter, nor

did it alter the N content of any soil pool. If elevated

CO2 had increased the net microbial immobilization into

forest floor or soil organic matter, then one would

expect to find greater amounts of 15N in these pools,

which is inconsistent with our observations. Rather, the

responses we observed likely arose due to an equivalent

increase in gross N mineralization and microbial

immobilization elicited by elevated CO2 (Holmes et al.

2006). Our data clearly demonstrate that greater plant

growth under elevated CO2 and the subsequent produc-

tion of litter have not fostered a decline in soil N

availability over the first eight years of our experiment.

Our observations contrast with a greater net immobi-

lization of 15N into the forest floor of scrub oak woodland

exposed to elevated CO2 (Hungate et al. 2006), a

community which sprouted from an established root

system following fire. In that ecosystem, elevated CO2 also

initially increased the acquisition of soil N by plants, but

this response diminished after seven years of exposure. In

combination with a greater incorporation of N into forest

floor, this decline in plant N acquisition was reported to

indicate the onset of progressive N limitation (Hungate et

al. 2006). These responses differ from those in our

experiment and may be due to differences in forest

development, the extent to which a newly developing or

preexisting root system has exploited soil, or native soil N

availability. Regardless of this disparity, elevated CO2 has

not elicited greater rates of microbial N immobilization, a

decline in soil N availability, or the onset of progressive N

limitation in our experiment (Holmes et al. 2006); this also

appears to be the case in other young, developing forests

dominated by sweet gum and loblolly pine (Zak et al.

2003, Finzi et al. 2006, Norby and Iversen 2006).

In contrast, elevated O3 damaged leaves, which led to

declines in photosynthesis, above- and belowground

growth, plant N demand, and the acquisition of soil N.

Ozone also had no effect on plant N-use efficiency,

evidenced by equivalent tissue-N concentrations in

plants exposed to ambient and elevated concentrations.

It is possible that aspen and aspen–birch communities

exposed to elevated O3 obtained lower amounts of soil

N due to an overall decline in growth. We are unable to

discern if concomitant declines in soil N availability

(Holmes et al. 2006) partially contributed to this

response, but it appears unlikely given the overall

decline in growth, plant N demand, and acquisition of

soil N elicited by elevated O3. Taken together, these

observations indicate that elevated O3 has reduced the

rate at which N cycles among plant and soil pools, an

effect directly opposed to that of elevated atmospheric

CO2.

Notwithstanding a reduction in forest-floor mass and

N content, diminished plant growth in an O3-enriched

atmosphere was insufficient to alter the N content or

flow of 15N among soil pools. This result was somewhat
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surprising, because microbial communities beneath

plants exposed to elevated concentrations of both O3

and CO2 can metabolize greater amounts of recent

photosynthate than those exposed elevated to CO2 alone

(Loya et al. 2003). These presumably labile substrates

should increase rates of microbial immobilization, and

subsequently the incorporation of N into forest floor

and soil organic matter. However, such a response is

inconsistent with the equivalent amounts of 15N

recovered in forest floor under ambient and elevated

O3; soil organic matter exhibited the identical response.

The fact that elevated O3 did not influence 15N recovery

in either of these pools implies that it also did not

influence rates of microbial N immobilization, at least

over the eight-year duration of our experiment. This

reasoning is further supported by a recent analysis, in

which elevated O3 had no effect on microbial N

immobilization (Holmes et al. 2006). It also appears

that lower rates of gross N mineralization (�16%;

Holmes et al. 2006) under elevated O3 were insufficient

to alter 15N recovery in soil organic matter. Overall, the

most apparent influence elevated O3 had on soil pools

was to decrease leaf-litter production, thereby lowering

the mass and N content of forest floor.

In these developing aspen and aspen–birch, higher

rates of NPP have been sustained by a more thorough

exploitation of soil for N, evidenced by the greater

amount of N and 15N obtained by plants growing in a

CO2-enriched atmosphere. This response occurred

despite no apparent change in soil N availability or

plant N-use efficiency. We conclude that progressive N

limitation is presently not a factor governing plant

growth response to elevated CO2 in these young,

developing forest communities. On the other hand,

elevated O3 exerted a substantial negative influence on

plant growth, plant N demand, and the amount of N

plants obtained from soil. The absence of a significant

interaction between atmospheric CO2 and O3 on plant

growth or N content suggests that O3 could elicit a

negative effect regardless of the atmospheric CO2

concentration. However, such a response might be

moderated by plant species or genotypes that are

insensitive to the effects of O3 (Coleman et al.

1995a, b). Because damaging O3 concentrations are

expected to occur across broad regions in the Northern

Hemisphere (Fowler et al. 1998, 1999), our observations

indicate that future O3 concentrations have the potential

to diminish the enhancement of plant growth, decrease

plant N acquisition, and lessen the storage of anthro-

pogenic C in temperate forests as CO2 accumulates in

Earth’s atmosphere.

ACKNOWLEDGMENTS

Our work was supported by grants (DE-FG02-93ER61666
and DE-FG02-95ER62125) from the Office of Science (BER),
U.S. Department of Energy and the U.S. Forest Service Global
Change Research program. We sincerely thank Becky Mau,
Jana Gastellum, John Hassett, Wendy Loya, Michelle Martin,
and Angela Picket for their work in the field and laboratory;

their contributions made this large-scale isotopic labeling
experiment possible. John King, Mark Kubiske, and Dave
Ellsworth generously provided us with plant biomass and leaf
area distribution data, which were integral to assembling the N
and 15N budgets for this experiment. Rich Norby reviewed an
earlier version of this manuscript, and we have benefited from
his insights and suggestions. We also gratefully acknowledge
Dave Karnosky, George Hendry, John Nagy, Keith Lewin, and
Judd Isebrands, who were instrumental in establishing and
maintaining the Rhinelander FACE facility.

LITERATURE CITED

Bandeff, J. M., K. S. Pregitzer, W. M. Loya, W. E. Holmes, and
D. R. Zak. 2006. Overstory community composition and
elevated atmospheric CO2 and O3 modify understory
biomass production and nitrogen acquisition. Plant and Soil
282:251–259.

Brooks, P. D., J. M. Stark, B. B. McInteer, and T. Preston.
1989. Diffusion method to prepare soil extracts for automat-
ed nitrogen-15 analysis. Soil Science Society of America
Journal 53:1707–1711.

Cabrera, M. L., and M. H. Beare. 1993. Alkaline persulfate
oxidation for determining total nitrogen in microbial biomass
extracts. Soil Science Society of America Journal 57:1007–
1012.

Ciais, P., P. P. Tans, M. Trolier, J. W. C. White, and R. J.
Francey. 1995. A large northern hemisphere terrestrial CO2

sink indicated by the 13C/12C ratio of atmospheric CO2.
Science 269:1098–1102.

Coleman, M. D., R. E. Dickson, J. G. Isebrands, and D. F.
Karnosky. 1995a. Photosynthetic productivity of aspen
clones varying in sensitivity to tropospheric ozone. Tree
Physiology 15:585–592.

Coleman, M. D., R. E. Dickson, J. G. Isebrands, and D. F.
Karnosky. 1995b. Carbon allocation and partitioning in
aspen clones varying in sensitivity to tropospheric ozone.
Tree Physiology 15:593–604.

Dickson, R. E., et al. 2000. Forest atmosphere carbon transfer
storage-II (FACTS II)—the aspen free-air CO2 and O3

enrichment (FACE) project: an overview. General Technical
Report NC-214. USDA Forest Service North Central
Experiment Station, Saint Paul, Minnesota, USA.

Field, C. B. 1999. Diverse controls on carbon storage under
elevated CO2: toward a synthesis. Pages 373–391 in Y. Luo
and H. A. Mooney, editors. Carbon dioxide and environ-
mental stress. Academic Press, San Diego, California, USA.

Finzi, A. C., D. J. P. Moore, E. H. DeLucia, J. Lichter, K. S.
Hofmockel, R. B. Jackson, H-S. Kim, R. Matamala, H. R.
McCarathy, R. Oren, J. S. Pippen, and W. H. Schlesinger.
2006. Progressive nitrogen limitation of ecosystem processes
under elevated CO2 in a warm-temperate forest. Ecology 87:
15–25.

Fowler, D., J. N. Cape, M. Coyle, C. Flechard, J. Kuylen-
stierna, K. Hicks, D. Derwent, C. Johnson, and D. Steven-
son. 1999. The global exposure of forests to air pollutants.
Water, Air, and Soil Pollution 116:5–32.

Fowler, D., C. Flechard, U. Skiba, M. Coyle, and J. N. Cape.
1998. The atmospheric budget of oxidized nitrogen and its
role in ozone formation and deposition. New Phytologist
139:11–23.

Gill, R. A., H. W. Polley, H. B. Johnson, L. J. Anderson, H.
Maherali, and R. B. Jackson. 2002. Nonlinear grassland
responses to past and future atmospheric CO2. Nature 417:
279–282.

Grantz, D. A., S. Gunn, and H.-B. Vu. 2006. O3 impacts on
plant development: a meta-analysis of root/shoot allocation
and growth. Plant, Cell and Environment 29:1193–1209.

Holmes, W. E., and D. R. Zak. 1999. Nitrogen dynamics
following clear-cut harvest of northern hardwood ecosys-
tems: microbial control over spatial patterns of N loss.
Ecological Applications 9:202–215.

DONALD R. ZAK ET AL.2638 Ecology, Vol. 88, No. 10



Holmes, W. E., D. R. Zak, K. S. Pregitzer, and J. S. King. 2003.
Soil nitrogen transformations under Populus tremuloides,
Betula papyrifera and Acer saccharum following 3 years
exposure to elevated CO2 and O3. Global Change Biology 9:
1743–1750.

Holmes, W. E., D. R. Zak, K. S. Pregitzer, and J. S. King. 2006.
Elevated CO2 and O3 alter soil nitrogen transformations
beneath trembling aspen, paper birch, and sugar maple.
Ecosystems 9:1354–1363.

Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van
der Linden, X. Dai, K. Maskell, and C. A. Johnson, editors.
2001. Climate change 2001: the scientific basis. Intergovern-
mental Panel on Climate Change (IPCC). Cambridge
University Press, Cambridge, UK.

Hungate, B. A., D. W. Johnson, P. Dijkstra, G. Hymus, P.
Stiling, J. P. Megonigal, A. L. Pagel, J. L. Moan, F. Day, J.
Li, R. Hinkle, and B. G. Drake. 2006. Nitrogen cycling
during seven years of atmospheric CO2 enrichment in a scrub
oak woodland. Ecology 87:26–40.

Johnson, D. W., A. M. Holyman, J. T. Ball, and R. F. Walker.
2006. Ponderosa pine responses to elevated CO2 and nitrogen
fertilization. Biogeochemistry 77:157–175.

Karnosky, D. F., K. S. Pregitzer, D. R. Zak, M. E. Kubiske,
G. R. Hendrey, D. Weinstein, and K. E. Percy. 2005. Scaling
ozone responses of forest trees to the ecosystem level. Plant,
Cell Environ. 28:965–981.

Karnosky, D. F., et al. 2003. Low levels of tropospheric O3

moderate responses of temperate hardwood forests to
elevated CO2: A synthesis of results from the Aspen FACE
project. Functional Ecology 17:289–304.

King, J. S., M. E. Kubiske, K. S. Pregitzer, G. R. Hendry, E. P.
McDonald, C. P. Giardina, V.S. Quinn, and D. F. Karnosky.
2005. Tropospheric O3 compromises net primary production
in young stands of trembling aspen, paper birch and sugar
maple in response to elevated atmospheric CO2. New
Phytologist 168:623–636.

King, J. S., K. S. Pregitzer, D. R. Zak, D. F. Karnosky, I. G.
Isebrands, R. E. Dickson, G. R. Hendrey, and J. Sober. 2001.
Fine-root biomass and fluxes of soil carbon in young stands
of paper birch and trembling aspen as affected by elevated
atmospheric CO2 and tropospheric O3. Oecologia 128:237–
250.

Loya, W. M., K. S. Pregitzer, N. J. Karberg, J. S. King, and
C. P. Giardina. 2003. Reduction of soil carbon formation by
tropospheric ozone under increased carbon dioxide levels.
Nature 425:705–707.

Luo, Y., C. B. Field, and R. B. Jackson. 2006. Does nitrogen
constrain carbon cycling, or does carbon input stimulate
nitrogen cycling? Ecology 87:3–4.

Luo, Y., et al. 2004. Progressive nitrogen limitation of
ecosystem responses to rising atmospheric CO2. BioScience
54:731–739.

Matamala, R., and W. H. Schlesinger. 2000. Effects of elevated
atmospheric CO2 on fine root production and activity in an
intact temperate forest ecosystem. Global Change Biology 6:
967–979.

Norby, R. J., and C. M. Iversen. 2006. Nitrogen uptake,
distribution, turnover, and efficiency of use in a CO2-
enriched sweetgum forest. Ecology 87:5–14.

Norby, R. J., J. Ledford, C. D. Reilly, M. E. Miller, and E. G.
O’Neill. 2004 Fine-root production dominates response of a
deciduous forest to atmospheric CO2 enrichment. Proceed-
ings of the National Academy of Sciences (USA) 26:9689–
9693.

Pregitzer, K. S., D. R. Zak, J. Maziasz, J. DeForest, P. S.
Curtis, and J. Lussenhop. 2000. Interactive effects of
atmospheric CO2 and soil-N availability on fine roots of
Populus tremuloides. Ecological Applications 10:18–33.

Reich, P. B., D. F. Grigal, J. D. Aber, and S. T. Gower. 1997.
Nitrogen mineralization and productivity in 50 hardwood
and conifer stands on diverse soils. Ecology 78:335–347.

Reich, P. B., S. E. Hobbie, T. Lee, D. Ellsworth, J. B. West, D.
Tilman, J. M. H. Knops, S. Naeem, and J. Trost. 2006.
Nitrogen limitation constrains sustainability of ecosystem
response to CO2. Nature 440:922–925.

Rothstein, D. E., D. R. Zak, K. S. Pregitzer, and P. S. Curtis.
2000. Kinetics of nitrogen uptake by Populus tremuloides in
relation to atmospheric CO2 and soil nitrogen availability.
Tree Physiology 20:265–270.

Zak, D. R., W. E. Holmes, A. C. Finzi, R. J. Norby, and W. H.
Schlesinger. 2003. Soil nitrogen cycling under elevated CO2: a
synthesis of forest FACE experiments. Ecological Applica-
tions 13:1508–1514.

Zak, D. R., and K. S. Pregitzer. 1990. Spatial and temporal
variability of nitrogen cycling in northern Lower Michigan.
Forest Science 36:367–380.

Zak, D. R, K. S. Pregitzer, P. S. Curtis, C. S. Vogel, W. E.
Holmes, and J. Lussenhop. 2000. Atmospheric CO2, soil-N
availability, and allocation of biomass and nitrogen by
Populus tremuloides. Ecological Applications 10:34–46.

October 2007 2639N CYCLING UNDER ELEVATED CO2 AND O3


